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Abstract- The aim of the project is to design an 

autonomous robot platform capable of reaching a desired 

destination starting from a known position in an 

environment filled with unknown obstacles. We are using 

the Virtual Force Field (VFF) method by Dr. J. 

Borenstein for the navigation purpose. The VFF method is 

the integration of two concepts; Certainty grids for 

obstacle representation and potential fields for navigation. 

The system can be summarized as follows. In the first 

phase distance measuring ultrasonic sensors mounted 

strategically on the robot chassis scans the environment 

and represents the obstacles in a grid-type world model. 

This grid-type world model has been developed at the 

Carnegie-Mellon University (CMU). In the certainty grid, 

the robot’s work area is represented by a two-dimensional 

array of square elements, denoted as cells. Each cell 

contains a certainty value (CV) that indicates the measure 

of confidence that an obstacle exists within the cell area. 

The ultrasonic sensor has a conical field of view and 

returns a radial measure of the distance to the nearest 

obstacle within the cone.  In the second phase the idea of 

imaginary forces acting on the robot has been considered. 

Location of the obstacles and the target with respect to the 

robot are fed into the computer or microcontroller. The 

obstacles exert repulsive forces, while the target applies 

an attractive force to the robot. A resultant force R, 

comprising the sum of a target-directed attractive force 

and repulsive forces from obstacles, is calculated for a 

given robot position. This resultant force has a specific 

magnitude and direction and the robot follows the same.  

Traditionally such systems use 12 to 24 distance 

measuring ultrasonic sensors placed circumferentially 

around the robot chassis. However due to cost 

considerations, we are using only one sensor mounted on 

a stepper motor (SRF-08 by devantech). The sensor will 

take the range readings for multiple positions by revolving 

the stepper motor to specific locations about the chassis. 

This interferes with the robot’s overall motion and our 

system may not match the speed of the traditional 

systems. However to overcome the above problem, we are 

modifying the ranging technique so that the time spent on 

the ranging operation can be minimized to some extent. 

The system takes the range readings for the entire 

circumference at 36-degree interval once every five 

readings. This information is updated for the successive 

readings. In the 4 successive readings the system takes 3 

ranging readings across 54 degree about the line joining 

the robot position with the destination point. The readings 

for the remaining positions are extrapolated from the first 

reading. The problem of low speed can be partially solved 

by the above approach. However it will introduce some 

inaccuracies in the location of the obstacles. This can be 

taken care by giving higher weightage to the current 

readings than the extrapolated readings. A rough 

weightage will be estimated from the MATLAB model of 

the above system.  

 

The hardware of the system consists of a differentially 

driven wheeled platform, driven by geared stepper motors 

and an ultrasonic rangefinder SRF-08 mounted on a 

stepper motor. SRF-08 gives the distance of the measured 

obstacle in IIC protocol. The sensor and the stepper 

motors communicate with the computer through the data 

pins of parallel port.  

 

I. Introduction 

Obstacle Avoidance Robots (OARs) have been an active 

area of research and development over the past three 

decades. This long-term interest has been mainly fueled 

by the myriad of practical applications that can be 

uniquely addressed by mobile robots due to their ability to 

work in large (potentially unstructured and hazardous) 

domains. The types obstacles can be classified into two 

types.  

 

1.1 Stationary Obstacles:  

Walls, heavy furniture like beds, tables, chairs etc fall into 

this category.  

 

1.2 Non-Stationary Obstacles: These obstacles result 

from “disorder” in the environment. The positional 

coordinates of these obstacles keep on changing. In our 

application, detected obstacles are added to the temporary 

map, & consequently processed like stationary obstacles 

until the temporary readings are finally extrapolated and 

overwritten by the new readings. Thus, the real time 

obstacles can also be taken care by temporarily 

considering them as stationary obstacles.  

 

Trajectory following: A reference point on the robot 

must follow a trajectory in the Cartesian space (i.e., a 

geometric path with an associated timing law) starting 

from a given initial configuration.  

One approach to obstacle avoidance is wall-following 

method. Here robot navigation is based on moving 

alongside walls at a predefined distance. If an obstacle is 

encountered, the robot regards the obstacle just as another 

wall following its contour until it may resume its original 

course. A more commonly employed method for obstacle 

avoidance is based on edge detection. The line connecting 

the two edges is considered to represent one of the 

obstacle’s boundries. A disadvantage with the edge 

detection method is the need of the robot to stop in front 



of an obstacle in order to allow for a more acurate 

measurement.  

 

The system can be summarized as follows. In the first 

phase distance measuring ultrasonic sensors mounted 

strategically on the robot chassis scans the environment 

and represents the obstacles in a grid-type world model. In 

the certainty grid, the robot’s work area is represented by 

a two-dimensional array of square elements, denoted as 

cells. Each cell contains a certainty value (CV) that 

indicates the measure of confidence that an obstacle exists 

within the cell area. In the second phase the idea of 

imaginary forces acting on the robot has been considered. 

The obstacles exert repulsive forces, while the target 

applies an attractive force to the robot. A resultant force 

R, comprising the sum of a target-directed attractive force 

and repulsive forces from obstacles, is calculated for a 

given robot position. This resultant force has a specific 

magnitude and direction and the robot follows the same.  

The modified system takes the range readings for the 

entire circumference at 36-degree interval once every five 

readings. This information is updated for the successive 

readings. In the 4 successive readings the system takes 3 

ranging readings across 54 degree about the line joining 

the robot position with the destination point. The readings 

for the remaining positions are extrapolated from the first 

reading. The problem of low speed can be partially solved 

by the above approach. However it will introduce some 

inaccuracies in the location of the obstacles. This can be 

taken care by giving higher weightage to the current 

readings than the extrapolated readings. A rough 

weightage will be estimated from the MATLAB model of 

the above system.  

 

II. TheVirtual Force Field (VFF) Method[4] :The idea 

of  objects conceptually exerting forces onto a mobile 

robot has been suggested by Khatib. Our implementation 

treats each ultrasonic range reading as a repulsive force 

vector. The reading from the target acts as an attractive 

force vector. If the magnitude of the sum of the repulsive 

forces exceeds a certain threshold , the robot stops, turns 

into the direction of the resultant force vector, and moves 

on. 

    

The Basic VFF Method[4] : As the robots move around, 

range readings are taken and projected into the Certainity 

Grid. Each occupied cell inside the Certainity grid  

window applies a repulsive force to the robot, “pushing” 

the robot away from the cell. The magnitude of this force 

is proportional to the cell contents, C(i,j), and inversely 

proportional to the square of the distance between the cell 

and the robot.  
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where 

crF         =Force Constant (repelling) 

=),( jid Distance between cell (i,j) and the robot 

=),( jiC Certainty level of cell (i,j) 

),( 00 yx =Robot’s present coordinates 

),( ji yx =Coordinates of cell (i,j) 

The resultant repulsive force, rF , is the vectorial sum of 

the individual forces from all the cells.  
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At any time during the motion, a constant-magnitude 

attracting force, tF , pulls the robot toward the target. tF  

is generated by the target point T, whose coordinates are 

known to the robot . The target-attracting Force, tF  is 

given by 








 −
+

−
= y

td

yy
x

td

xx
FtF tt
ct

ˆ
)(

ˆ
)(

)( 00
= tF  

where, 

ctF     = Force constant (attraction to the target) 

td      = Distance between the target and the robot 

tt yx , = Target coordinates 

 

Note: )(tF is independent of the absolute distance to the 

target.    

The vectorial sum of all forces, repulsive from occupied 

cells and attractive from the target position, produces a 

resultant force vector R:   

rt FFR +=  

The direction of ,R  RR=δ  (in degrees), is used as a 

reference for the robot’s steering-rate command.  

 

III. The kinematical model:  

The kinematical model for the obstacle avoidance robot 

(OAR) under the nonholonomic constraint of pure rolling 

and non-slipping is given as follows. 

311 cos* qvq =&                             …   …   …   … (3.1)   

312 sin* qvq =&                             …   …   …   … (3.2) 

23 vq =&                                           …   …   …   … (3.3) 

 

1v  = The longitudinal velocity applied to the vehicle 

 2v = The instantaneous angular deflection provided to the 

wheels of the vehicle.            

1v   and 2v  depend on k1 and k2 respectively.  

Where 

=1k Forward velocity constant 

=2k Angular deflection constant of the wheels   
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q is the instantaneous position of the origin of the 

reference frame attached to the vehicle. 

 

xc (t) and yc (t) denote the position of the center of mass of 

the Obstacle Avoidance Robot (OAR) along the X and Y 

Cartesian coordinate frames.  

 

And velocity vector v(t) is defined as 
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The vehicle is to start at a position (x, y, θ ) and has to 
reach a given point (xd, yd, θ d) with respect to the global 
reference plane.  

 

The model is a tricycle type model having two rear wheels 

driven independently and a front wheel on a castor. The 

ultrasonic sensor (sonar) is strategically mounted on a 

rotating platform. The platform is rotated at a constant 

angle by the geared stepper motor at specified constant 

intervals. Thus, a single sensor maps its complete 

environment (360-degree). This modified scheme cuts 

down the need of using 12 or 24 ultrasonic sensors for the 

mapping purpose, thereby reducing the overall cost of the 

system. The disadvantage comes in the form of overhead 

time taken to do so. Since here a single sensor is 

replicating 12 sensors and that too with the same 

efficiency. But this can be taken care by including certain 

modification in the VFF algorithm.  

The modified system takes the range readings for the 

entire circumference at 36-degree interval once every five 

readings. This information is updated for the successive 

readings. In the 4 successive readings the system takes 3 

ranging readings across 54 degree about the line joining 

the robot position with the destination point. The readings 

for the remaining positions are extrapolated from the first 

reading. The problem of low speed can be partially solved 

by the above approach. 

 

IV. The MATLAB model  

The behavior of the model and the strategy can be tested 

if we can obtain the trajectory of the path, when subjected 

to a given set of conditions.  For that we need to get all 

the values of the state variables (q1, q2, q3) at small 

intervals of time, which can later be plotted to obtain the 

trajectory of the path followed. Hence the above set of 

first order differential equations have to be integrated in a 

time interval; given the values of the initial conditions and 

parameters using ode23; A powerful tool of matlab. 

Ode23 is a function for the numerical solution of ordinary 

differential equations. It can solve simple differential 

equations or simulate complex dynamical systems. It 

integrates a system of ordinary differential equations 

using 2nd & 3rd order Runge-Kutta formulas.  This 

particular 3rd-order method reduces to Simpson's 1/3 rule 

and uses the 3rd order estimate for xout. The process of 

ode23 is as follows: A string variable with the name of the 

M-file that defines the differential equations to be 

integrated. The function needs to compute the state 

derivative vector, given the current time and state vector. 

It must take two input arguments; scalar t (time) and 

column vector q (state), and return output argument qdot, 

a column vector of state derivatives. The above set of first 

order differential equations was converted into the 

following M-file, to execute ode23. 

 

4.1 Testing the strategy to reach destination points: 

 The above model is modeled in MATLAB and the 

strategy is tested for the vehicle to reach different 

destination points in all the four different quadrants. The 

matlab program has been included which explains the 

constants k1 and k2.  

Given a global reference plane in which the instantaneous 

position and orientation of the model is given by (q(1), 

q(2), q(3)) with respect to the global reference system. 

The vehicle is to start at a position (x, y, θ ) and has to 
reach a given point (xd, yd, θ d) with respect to the global 
reference plane.  

The longitudinal axis of the reference frame attached to 

the vehicle and the lateral axis perpendicular to the 

longitudinal axis. Since this reference frame’s position 

changes continuously with respect to the global reference 

system, the instantaneous position of the origin of the 

reference frame attached to the vehicle is given by 

( 321 ,, qqq ). 

 
 

 

Fig.1 The trajectory of the robot vehicle in an 

environment free of obstacles.  

 



In Fig.1 the robot is initially at origin. There are no 

obstacles in the environment, thus the robot moves under 

a constant attractive force from the target. Hence the path 

of the robot is a straight line. It moves on the 

displacement line joining the robot with the target T.  

 

Fig. 2 simulates the path of the robot vehicle reaching the 

target, which has been placed in the 2nd quadrant.     

 

 
      

Fig2(a). The trajectory of the robot vehicle in an 

environment with obstacle clusters.     

 

The target is in the 2nd quadrant at (-100,100). The robot 

initially moves along the displacement line joining the 

robot with the target. But as soon as the ultrasonic sensor 

maps the obstacle cluster, the repulsive forces begin 

acting. Thus, the robot then calculates the resultant of the 

attractive and the repulsive forces and traverses in the 

direction of the resultant force.  The speed of motion 

depends on the magnitude of the resultant force F.    

We can see the zigzag motion in fig 2.1  

This is an error, which can be rectified by adjusting the 

values of the parameters k1 and k2.  

 
Fig 2(b) The trajectory of the robot with k1=7 and 

k2=5 

 

 

 

4.2 The optimal values of the parameters k1 and k2        
 

=1k Forward velocity constant 

=2k Angular deflection constant of the wheels   

On comparing figures, 2.1 and 2.2, we see that  

the error (zigzag motion) near the obstacle cluster 

decreases in fig 2.2 This has been possible by varying the 

values of the parameters k1 and k2.  

In fig. 2.1 k1=10 and k2=7. 

In fig. 2.2 k1=7   and k2=5.   

 

This mathematical model considers just one obstacle 

cluster. Nevertheless, a number of obstacle clusters can be 

considered by modifying the MATLAB program slightly.  

That is, by considering two obstacle cluster equations. 

The obstacle cluster may not be in a straight line. 

Obstacles of any shape and size can be depicted with the 

help of suitable equations.   

 

 
Fig3. This fig. shows the robot moving away from the 

target after reaching it. This problem was encountered 

by suitably choosing the values of k1 (the velocity 

constant) and k2 (the steering constant).  

 

 
 

Fig. 4 ) The smooth trajectory of the robot after 

adjusting the values of the parameters.   



V. The MATLAB Program for simulation of Obstacle                          

Avoidance Robot (OAR)  
 

% ---------Attractive force------------ 
theta = atan2((y-q(2)),(x-q(1))) - q(3); 

r = sqrt((x - q(1))^2 + (y - q(2))^2); 

% fctx = (fct*(cos(theta)); 

% fcty = (fct*(sin(theta)); 

fctx = fct*((x - q(1))/r); 

fcty = fct*((y - q(2))/r); 

 

%------------------------------------------------------- 
angle = [ pi/6 pi/ pi/2 (2/3)*pi (5/6)*pi pi (7/6)*pi (4/3)*pi 

(3/2)*pi  (5/3)*pi, (11/6)*pi 2*pi ]; 

for n=1:11, 

m0(1,n) = tan(ang(1,n) + q(3)); 

m = 1; 

c = 100; 

c0(1,n) = q(2) - m0(1,n)*q(1); 

 
% ----------End points of the Obstacle----------- 

xm(1,n) = (c - c0(1,n))/(m0(1,n) - m); 

ym(1,n) = (m0(1,n)*c - m*c0(1,n))/(m0(1,n) - m); 

 

if ((xm(1,n)<x2) && (xm(1,n)>x1)) 

dsqr(1,n) = ((xm(1,n) - q(1))^2 + (ym(1,n) - q(2))^2); 

p = fcr/dsqr(1,n)/sqrt(dsqr(1,n)); 

fcrx(1,n) = p*((xm(1,n)) - q(1)); 

fcry(1,n) = p*((ym(1,n)) - q(2)); 

else 

dsqr(1,n) = 0; 

fcrx(1,n) = 0; 

fcry(1,n) = 0;     

end 

end 

xm 

ym 

Fx = fctx -  

(fcrx(1,1)+fcrx(1,2)+fcrx(1,3)+fcrx(1,4)+fcrx(1,5)+fcrx(1

,6)+fcrx(1,7)+fcrx(1,8)+fcrx(1,9)+fcrx(1,10)+fcrx(1,11)); 

%Fxa = fctx - sum(fcrx'); 

Fy = fcty -  

(fcry(1,1)+fcry(1,2)+fcry(1,3)+fcry(1,4)+fcry(1,5)+fcry(1

,6)+fcry(1,7)+fcry(1,8)+fcry(1,9)+fcry(1,10)+fcry(1,11)); 

beta = (atan2(Fy,Fx)) ; 

v = k1*sqrt(Fx^2 + Fy^2); 

 

qd(1,1) = v*cos(q(3)); 

qd(2,1) = v*sin(q(3));  

qd(3,1) = k2*(beta - q(3)); 

       

%endfunction 

 

 

VI. Results of simulations  

The modified strategy when tested with the MATLAB 

model demonstrated very encouraging results. Fig 3. 

demonstrates a smooth trajectory. This model has better 

efficiency than its previous counterparts. Using one sensor 

instead of 24, the cost of the system has been reduced 

drastically. The mapping procedures and the avoidance of 

obstacles has been successfully achieved which reaching 

very close to the predefined target.  

The following problems have been successfully rectified 

and a full proof strategy has been demonstrated.       

 

1. Solution of the Low speed Problem  

Since in the modified model, only one sensor is 

mapping the complete environment (360-

degree), thus the speed of mapping decreases. 

This problem has been encountered by 

modifying the mapping strategy slightly. The 

modified system takes the range readings for the 

entire circumference at 36-degree interval once 

every five readings. This information is updated 

for the successive readings. In the 4 successive 

readings the system takes 3 ranging readings 

across 54 degree about the line joining the robot 

position with the destination point. The readings 

for the remaining positions are extrapolated from 

the first reading. The problem of low speed can 

be partially solved by the above approach. 

 

2. Solution for the Errors in the motion  

The zigzag motion, which can be observed in fig. 

2.1, has been rectified in fig 2.2.  

This problem has been rectified by 

experimenting and adjusting the values of the 

parameters k1 and k2. The relatively lesser error 

can be clearly witnessed from figure 2.2. in 

which the values of constants k1 and k2 have 

been adjusted to  

k1=7 and k2 =5.  

 

3. Repulsion from the target once the robot 

reached the target.  

It was observed that once the robot reached the 

target it moved away from it. (See fig.4)  It 

seemed as if a repulsive force was acting from 

the target towards the robot. This cause for 

problem was wrong values of parameters. This 

problem was rectified by selecting suitable 

values of k1 and k2.  

 

VII. Conclusions 

The above model of the obstacle avoidance robot can 

reach a predefined target avoiding all the global and real 

time obstacles in its path. The modified model in this 

paper is different from the traditional model in the sense 

that it uses just one sensor instead of the 24 sensors used 

in the traditional model for mapping the environment. 

Thereby, it decreases the overall cost of the system 

significantly. The MATLAB model demonstrates the 

enhanced efficiency of this model. The success of this 

model has also been practically demonstrated by our 

robot. This model can be used further in all the obstacle 

avoidance robots for efficient path planning.    
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