
Mathematical Modeling and Simulation of Target Oriented Obstacle Avoidance

Robot

Subhasis Behera
National Institute of Technology Jalandhar,

Subhasis.behera@gmail.com

Abstract- The aim of the project is to design an

autonomous robot platform capable of reaching a desired

destination starting from a known position in an

environment filled with unknown obstacles. We are using

the Virtual Force Field (VFF) method by Dr. J.

Borenstein for the navigation purpose. The VFF method is

the integration of two concepts; Certainty grids for

obstacle representation and potential fields for navigation.

The system can be summarized as follows. In the first

phase distance measuring ultrasonic sensors mounted

strategically on the robot chassis scans the environment

and represents the obstacles in a grid-type world model.

This grid-type world model has been developed at the

Carnegie-Mellon University (CMU). In the certainty grid,

the robot’s work area is represented by a two-dimensional

array of square elements, denoted as cells. Each cell

contains a certainty value (CV) that indicates the measure

of confidence that an obstacle exists within the cell area.

The ultrasonic sensor has a conical field of view and

returns a radial measure of the distance to the nearest

obstacle within the cone. In the second phase the idea of

imaginary forces acting on the robot has been considered.

Location of the obstacles and the target with respect to the

robot are fed into the computer or microcontroller. The

obstacles exert repulsive forces, while the target applies

an attractive force to the robot. A resultant force R,

comprising the sum of a target-directed attractive force

and repulsive forces from obstacles, is calculated for a

given robot position. This resultant force has a specific

magnitude and direction and the robot follows the same.

Traditionally such systems use 12 to 24 distance

measuring ultrasonic sensors placed circumferentially

around the robot chassis. However due to cost

considerations, we are using only one sensor mounted on

a stepper motor (SRF-08 by devantech). The sensor will

take the range readings for multiple positions by revolving

the stepper motor to specific locations about the chassis.

This interferes with the robot’s overall motion and our

system may not match the speed of the traditional

systems. However to overcome the above problem, we are

modifying the ranging technique so that the time spent on

the ranging operation can be minimized to some extent.

The system takes the range readings for the entire

circumference at 36-degree interval once every five

readings. This information is updated for the successive

readings. In the 4 successive readings the system takes 3

ranging readings across 54 degree about the line joining

the robot position with the destination point. The readings

for the remaining positions are extrapolated from the first

reading. The problem of low speed can be partially solved

by the above approach. However it will introduce some

inaccuracies in the location of the obstacles. This can be

taken care by giving higher weightage to the current

readings than the extrapolated readings. A rough

weightage will be estimated from the MATLAB model of

the above system.

The hardware of the system consists of a differentially

driven wheeled platform, driven by geared stepper motors

and an ultrasonic rangefinder SRF-08 mounted on a

stepper motor. SRF-08 gives the distance of the measured

obstacle in IIC protocol. The sensor and the stepper

motors communicate with the computer through the data

pins of parallel port.

I. Introduction

Obstacle Avoidance Robots (OARs) have been an active

area of research and development over the past three

decades. This long-term interest has been mainly fueled

by the myriad of practical applications that can be

uniquely addressed by mobile robots due to their ability to

work in large (potentially unstructured and hazardous)

domains. The types obstacles can be classified into two

types.

1.1 Stationary Obstacles:

Walls, heavy furniture like beds, tables, chairs etc fall into

this category.

1.2 Non-Stationary Obstacles: These obstacles result

from “disorder” in the environment. The positional

coordinates of these obstacles keep on changing. In our

application, detected obstacles are added to the temporary

map, & consequently processed like stationary obstacles

until the temporary readings are finally extrapolated and

overwritten by the new readings. Thus, the real time

obstacles can also be taken care by temporarily

considering them as stationary obstacles.

Trajectory following: A reference point on the robot

must follow a trajectory in the Cartesian space (i.e., a

geometric path with an associated timing law) starting

from a given initial configuration.

One approach to obstacle avoidance is wall-following

method. Here robot navigation is based on moving

alongside walls at a predefined distance. If an obstacle is

encountered, the robot regards the obstacle just as another

wall following its contour until it may resume its original

course. A more commonly employed method for obstacle

avoidance is based on edge detection. The line connecting

the two edges is considered to represent one of the

obstacle’s boundries. A disadvantage with the edge

detection method is the need of the robot to stop in front

of an obstacle in order to allow for a more acurate

measurement.

The system can be summarized as follows. In the first

phase distance measuring ultrasonic sensors mounted

strategically on the robot chassis scans the environment

and represents the obstacles in a grid-type world model. In

the certainty grid, the robot’s work area is represented by

a two-dimensional array of square elements, denoted as

cells. Each cell contains a certainty value (CV) that

indicates the measure of confidence that an obstacle exists

within the cell area. In the second phase the idea of

imaginary forces acting on the robot has been considered.

The obstacles exert repulsive forces, while the target

applies an attractive force to the robot. A resultant force

R, comprising the sum of a target-directed attractive force

and repulsive forces from obstacles, is calculated for a

given robot position. This resultant force has a specific

magnitude and direction and the robot follows the same.

The modified system takes the range readings for the

entire circumference at 36-degree interval once every five

readings. This information is updated for the successive

readings. In the 4 successive readings the system takes 3

ranging readings across 54 degree about the line joining

the robot position with the destination point. The readings

for the remaining positions are extrapolated from the first

reading. The problem of low speed can be partially solved

by the above approach. However it will introduce some

inaccuracies in the location of the obstacles. This can be

taken care by giving higher weightage to the current

readings than the extrapolated readings. A rough

weightage will be estimated from the MATLAB model of

the above system.

II. TheVirtual Force Field (VFF) Method[4] :The idea

of objects conceptually exerting forces onto a mobile

robot has been suggested by Khatib. Our implementation

treats each ultrasonic range reading as a repulsive force

vector. The reading from the target acts as an attractive

force vector. If the magnitude of the sum of the repulsive

forces exceeds a certain threshold , the robot stops, turns

into the direction of the resultant force vector, and moves

on.

The Basic VFF Method[4] : As the robots move around,

range readings are taken and projected into the Certainity

Grid. Each occupied cell inside the Certainity grid

window applies a repulsive force to the robot, “pushing”

the robot away from the cell. The magnitude of this force

is proportional to the cell contents, C(i,j), and inversely

proportional to the square of the distance between the cell

and the robot.








 −
+

−
= y

jid

yy
x

jid

xx

jid

jiCF
jiF ttcr ˆ

),(
ˆ

),(),(

),(
),(00

2

where

crF =Force Constant (repelling)

=),(jid Distance between cell (i,j) and the robot

=),(jiC Certainty level of cell (i,j)

),(00 yx =Robot’s present coordinates

),(ji yx =Coordinates of cell (i,j)

The resultant repulsive force, rF , is the vectorial sum of

the individual forces from all the cells.

∑=
ji

cr jiFF
,

),(= rF

At any time during the motion, a constant-magnitude

attracting force, tF , pulls the robot toward the target. tF

is generated by the target point T, whose coordinates are

known to the robot . The target-attracting Force, tF is

given by








 −
+

−
= y

td

yy
x

td

xx
FtF tt
ct

ˆ
)(

ˆ
)(

)(00
= tF

where,

ctF = Force constant (attraction to the target)

td = Distance between the target and the robot

tt yx , = Target coordinates

Note:)(tF is independent of the absolute distance to the

target.

The vectorial sum of all forces, repulsive from occupied

cells and attractive from the target position, produces a

resultant force vector R:

rt FFR +=

The direction of ,R RR=δ (in degrees), is used as a

reference for the robot’s steering-rate command.

III. The kinematical model:

The kinematical model for the obstacle avoidance robot

(OAR) under the nonholonomic constraint of pure rolling

and non-slipping is given as follows.

311 cos* qvq =& … … … … (3.1)

312 sin* qvq =& … … … … (3.2)

23 vq =& … … … … (3.3)

1v = The longitudinal velocity applied to the vehicle

 2v = The instantaneous angular deflection provided to the

wheels of the vehicle.

1v and 2v depend on k1 and k2 respectively.

Where

=1k Forward velocity constant

=2k Angular deflection constant of the wheels

q =

















c

c

c

y

x

θ
 … … … … … … … (3.4)

q& =

















c

c

c

y

x

θ&
&

&

 … … … … … … … (3.5)

q is the instantaneous position of the origin of the

reference frame attached to the vehicle.

xc (t) and yc (t) denote the position of the center of mass of

the Obstacle Avoidance Robot (OAR) along the X and Y

Cartesian coordinate frames.

And velocity vector v(t) is defined as

 v = 








2

1

v

v
 = 









d

v

θ
1

The vehicle is to start at a position (x, y, θ) and has to
reach a given point (xd, yd, θ d) with respect to the global
reference plane.

The model is a tricycle type model having two rear wheels

driven independently and a front wheel on a castor. The

ultrasonic sensor (sonar) is strategically mounted on a

rotating platform. The platform is rotated at a constant

angle by the geared stepper motor at specified constant

intervals. Thus, a single sensor maps its complete

environment (360-degree). This modified scheme cuts

down the need of using 12 or 24 ultrasonic sensors for the

mapping purpose, thereby reducing the overall cost of the

system. The disadvantage comes in the form of overhead

time taken to do so. Since here a single sensor is

replicating 12 sensors and that too with the same

efficiency. But this can be taken care by including certain

modification in the VFF algorithm.

The modified system takes the range readings for the

entire circumference at 36-degree interval once every five

readings. This information is updated for the successive

readings. In the 4 successive readings the system takes 3

ranging readings across 54 degree about the line joining

the robot position with the destination point. The readings

for the remaining positions are extrapolated from the first

reading. The problem of low speed can be partially solved

by the above approach.

IV. The MATLAB model

The behavior of the model and the strategy can be tested

if we can obtain the trajectory of the path, when subjected

to a given set of conditions. For that we need to get all

the values of the state variables (q1, q2, q3) at small

intervals of time, which can later be plotted to obtain the

trajectory of the path followed. Hence the above set of

first order differential equations have to be integrated in a

time interval; given the values of the initial conditions and

parameters using ode23; A powerful tool of matlab.

Ode23 is a function for the numerical solution of ordinary

differential equations. It can solve simple differential

equations or simulate complex dynamical systems. It

integrates a system of ordinary differential equations

using 2nd & 3rd order Runge-Kutta formulas. This

particular 3rd-order method reduces to Simpson's 1/3 rule

and uses the 3rd order estimate for xout. The process of

ode23 is as follows: A string variable with the name of the

M-file that defines the differential equations to be

integrated. The function needs to compute the state

derivative vector, given the current time and state vector.

It must take two input arguments; scalar t (time) and

column vector q (state), and return output argument qdot,

a column vector of state derivatives. The above set of first

order differential equations was converted into the

following M-file, to execute ode23.

4.1 Testing the strategy to reach destination points:

 The above model is modeled in MATLAB and the

strategy is tested for the vehicle to reach different

destination points in all the four different quadrants. The

matlab program has been included which explains the

constants k1 and k2.

Given a global reference plane in which the instantaneous

position and orientation of the model is given by (q(1),

q(2), q(3)) with respect to the global reference system.

The vehicle is to start at a position (x, y, θ) and has to
reach a given point (xd, yd, θ d) with respect to the global
reference plane.

The longitudinal axis of the reference frame attached to

the vehicle and the lateral axis perpendicular to the

longitudinal axis. Since this reference frame’s position

changes continuously with respect to the global reference

system, the instantaneous position of the origin of the

reference frame attached to the vehicle is given by

(321 ,, qqq).

Fig.1 The trajectory of the robot vehicle in an

environment free of obstacles.

In Fig.1 the robot is initially at origin. There are no

obstacles in the environment, thus the robot moves under

a constant attractive force from the target. Hence the path

of the robot is a straight line. It moves on the

displacement line joining the robot with the target T.

Fig. 2 simulates the path of the robot vehicle reaching the

target, which has been placed in the 2nd quadrant.

Fig2(a). The trajectory of the robot vehicle in an

environment with obstacle clusters.

The target is in the 2nd quadrant at (-100,100). The robot

initially moves along the displacement line joining the

robot with the target. But as soon as the ultrasonic sensor

maps the obstacle cluster, the repulsive forces begin

acting. Thus, the robot then calculates the resultant of the

attractive and the repulsive forces and traverses in the

direction of the resultant force. The speed of motion

depends on the magnitude of the resultant force F.

We can see the zigzag motion in fig 2.1

This is an error, which can be rectified by adjusting the

values of the parameters k1 and k2.

Fig 2(b) The trajectory of the robot with k1=7 and

k2=5

4.2 The optimal values of the parameters k1 and k2

=1k Forward velocity constant

=2k Angular deflection constant of the wheels

On comparing figures, 2.1 and 2.2, we see that

the error (zigzag motion) near the obstacle cluster

decreases in fig 2.2 This has been possible by varying the

values of the parameters k1 and k2.

In fig. 2.1 k1=10 and k2=7.

In fig. 2.2 k1=7 and k2=5.

This mathematical model considers just one obstacle

cluster. Nevertheless, a number of obstacle clusters can be

considered by modifying the MATLAB program slightly.

That is, by considering two obstacle cluster equations.

The obstacle cluster may not be in a straight line.

Obstacles of any shape and size can be depicted with the

help of suitable equations.

Fig3. This fig. shows the robot moving away from the

target after reaching it. This problem was encountered

by suitably choosing the values of k1 (the velocity

constant) and k2 (the steering constant).

Fig. 4) The smooth trajectory of the robot after

adjusting the values of the parameters.

V. The MATLAB Program for simulation of Obstacle

Avoidance Robot (OAR)

% ---------Attractive force------------
theta = atan2((y-q(2)),(x-q(1))) - q(3);

r = sqrt((x - q(1))^2 + (y - q(2))^2);

% fctx = (fct*(cos(theta));

% fcty = (fct*(sin(theta));

fctx = fct*((x - q(1))/r);

fcty = fct*((y - q(2))/r);

%---
angle = [pi/6 pi/ pi/2 (2/3)*pi (5/6)*pi pi (7/6)*pi (4/3)*pi

(3/2)*pi (5/3)*pi, (11/6)*pi 2*pi];

for n=1:11,

m0(1,n) = tan(ang(1,n) + q(3));

m = 1;

c = 100;

c0(1,n) = q(2) - m0(1,n)*q(1);

% ----------End points of the Obstacle-----------

xm(1,n) = (c - c0(1,n))/(m0(1,n) - m);

ym(1,n) = (m0(1,n)*c - m*c0(1,n))/(m0(1,n) - m);

if ((xm(1,n)<x2) && (xm(1,n)>x1))

dsqr(1,n) = ((xm(1,n) - q(1))^2 + (ym(1,n) - q(2))^2);

p = fcr/dsqr(1,n)/sqrt(dsqr(1,n));

fcrx(1,n) = p*((xm(1,n)) - q(1));

fcry(1,n) = p*((ym(1,n)) - q(2));

else

dsqr(1,n) = 0;

fcrx(1,n) = 0;

fcry(1,n) = 0;

end

end

xm

ym

Fx = fctx -

(fcrx(1,1)+fcrx(1,2)+fcrx(1,3)+fcrx(1,4)+fcrx(1,5)+fcrx(1

,6)+fcrx(1,7)+fcrx(1,8)+fcrx(1,9)+fcrx(1,10)+fcrx(1,11));

%Fxa = fctx - sum(fcrx');

Fy = fcty -

(fcry(1,1)+fcry(1,2)+fcry(1,3)+fcry(1,4)+fcry(1,5)+fcry(1

,6)+fcry(1,7)+fcry(1,8)+fcry(1,9)+fcry(1,10)+fcry(1,11));

beta = (atan2(Fy,Fx)) ;

v = k1*sqrt(Fx^2 + Fy^2);

qd(1,1) = v*cos(q(3));

qd(2,1) = v*sin(q(3));

qd(3,1) = k2*(beta - q(3));

%endfunction

VI. Results of simulations

The modified strategy when tested with the MATLAB

model demonstrated very encouraging results. Fig 3.

demonstrates a smooth trajectory. This model has better

efficiency than its previous counterparts. Using one sensor

instead of 24, the cost of the system has been reduced

drastically. The mapping procedures and the avoidance of

obstacles has been successfully achieved which reaching

very close to the predefined target.

The following problems have been successfully rectified

and a full proof strategy has been demonstrated.

1. Solution of the Low speed Problem

Since in the modified model, only one sensor is

mapping the complete environment (360-

degree), thus the speed of mapping decreases.

This problem has been encountered by

modifying the mapping strategy slightly. The

modified system takes the range readings for the

entire circumference at 36-degree interval once

every five readings. This information is updated

for the successive readings. In the 4 successive

readings the system takes 3 ranging readings

across 54 degree about the line joining the robot

position with the destination point. The readings

for the remaining positions are extrapolated from

the first reading. The problem of low speed can

be partially solved by the above approach.

2. Solution for the Errors in the motion

The zigzag motion, which can be observed in fig.

2.1, has been rectified in fig 2.2.

This problem has been rectified by

experimenting and adjusting the values of the

parameters k1 and k2. The relatively lesser error

can be clearly witnessed from figure 2.2. in

which the values of constants k1 and k2 have

been adjusted to

k1=7 and k2 =5.

3. Repulsion from the target once the robot

reached the target.

It was observed that once the robot reached the

target it moved away from it. (See fig.4) It

seemed as if a repulsive force was acting from

the target towards the robot. This cause for

problem was wrong values of parameters. This

problem was rectified by selecting suitable

values of k1 and k2.

VII. Conclusions

The above model of the obstacle avoidance robot can

reach a predefined target avoiding all the global and real

time obstacles in its path. The modified model in this

paper is different from the traditional model in the sense

that it uses just one sensor instead of the 24 sensors used

in the traditional model for mapping the environment.

Thereby, it decreases the overall cost of the system

significantly. The MATLAB model demonstrates the

enhanced efficiency of this model. The success of this

model has also been practically demonstrated by our

robot. This model can be used further in all the obstacle

avoidance robots for efficient path planning.

References

[1] Johann Borenstein and Yoram Koren. Optimum

path algorithms for autonomous vehicles.

[2] J. Borenstein and Y. Koren. The Vector Field

Histogram-Fast Obstacle Avoidance For Mobile

Robots. In IEEE Journal of Robotics and

Automation Vol 7, No 3, June 1991

[3] J. Borenstein and Y. Koren. Obstacle Avoidance

with Ultrasonic Sensors. In IEEE Journal of

Robotics and Automation.

[4] J. Borenstein and Y. Koren. Real-time Obstacle

Avoidance for Fast Mobile Robots. In IEEE

Transactions on Systems, Man and Cybernetics,

Vol. 19, No. 5, Sept/Oct. 1989.

[5] J. Borenstein and Y. Koren. Tele-autonomous

Guidance for Mobile Robots. In IEEE

Transactions on Systems, Man and Cybernetics,

Special Issue on Unmanned Systems and

Vehicles Vol. 20, No. 6, Nov/Dec 1990.

[6] J. Borenstein and Y. Koren. Histogram In-

motion mapping for Mobile Robot Obstacle

Avoidance. In IEEE Journal of Robotics and

Automation, Vol. 7, No. 4, 1991, pp. 535-539.

