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Abstract

The project aims to design and develop a universal Wheeled Mobile Robot, to
implement different kinematic models and test various control strategies. A de-
tailed study of kinematics of Wheeled Mobile Robots is done. The objective is
to develop an appropriate kinematic model of a mobile robot and test various
time varying feedback control algorithms on this model to control its motion from
a given starting position to desired goal position. Various control strategies are
reviewed and compared for trajectory tracking and posture stabilization problems
in an environment free of obstacles. Other problems such as parking problem is
also reviewed. The strategies are simulated in MATLAB using ode23 solver. An
appropriate mathematical model for a car-type mobile robot is derived to deter-
mine the relationship between the actual pattern of motion followed by the wheels
of the vehicle. A control software is developed for interfacing with the driving
hardware. The control software includes the implementation of the various al-
gorithms pertaining to the kinematic model and strategies, software for stepper
motor control and certain plotting functions for displaying the status of the mobile
robot. A control circuit is made using ULN2003 1Cs, which convert the output
signals generated by the control software to the required form so as to be used by
the stepper motors. From the comparison of the obtained results, a guideline is
provided for Wheeled Mobile Robot end-users.



Chapter 1
Introduction

Over the past twenty years the design and control of wheeled mobile robots
(WMRs) has been heavily studied due to the challenging theoretical nature of
the problem (i.e., WMRs are nonlinear, under-actuated systems subject to non-
holonomic constraints imposed by a pure rolling and non-slipping assumption)
and the wide range of applications that are well suited to their use (e.g.,munitions
handling, exploration, security and monitoring, etc.). One of the major areas of
application of WMRs is in control of vehicle motions for Intelligent Vehicle High-
way Systems (IVHS). The California PATH (Partners for Advanced Transit and
Highways) is among the leading platforms for the research in this area. Most of
these works have been concentrated on tracking and posture stabilization prob-
lems. The tracking problem is to design a control law which makes a WMR follow
a given trajectory. Stationary state feedback technique was used for this and stable
controllers were proposed by many authors, which were implemented and tested
in various WMRs successfully. The posture stabilization problem is to stabilize
the vehicle to a desired final posture starting from any initial posture (posture
means both position and orientation of the mobile robot from base). Such posture
stabilization problem of mobile robot is more difficult than the tracking problem in
the sense that a nonholonomic system with more degrees of freedom than control
inputs cannot be stabilized by any static state feedback control law.

Apart from the difficulty associated with the control of multi-degree WMRs,
difficulty is associated with control of these systems from a computer and the
dynamics of the actuation systems. Recently, there are also many researches on the
control of a car-like WMR for real application. Unlike the conventional differential

type two wheeled WMRs, the car-like mobile robot has a low limit on turning



radius and this constraint makes the problem more difficult. Samson [2] proposed
a time-varying feedback control, which was the first theoretical approach. A few
years ago, chained form systems have been introduced to model the kinematics of
nonholonomic mechanical system.

The approaches for this problem can be largely divided into two categories. The
first one is open loop control, i.e. the nonholonomic path planning and the second
one is the closed-loop control, i.e. state feedback control. In the nonholonomic
path planning, authors assume inputs (v, delta) in the kinematic model as a
function of time, then assume and modify function to fit their purpose. but it is
generally difficult to find or modify inputs v, delta which transfer a car-like mobile
robot to a desired posture and a tracking control should be designed because it is
only path-planning. In contrast to this, the most important merit of state feedback
control in posture stabilization is that it can be directly used as a controller without
any path-planning. In this work a motion control of a car-type mobile robot is

discussed.

1.1 The Objective

The primary objective of the following work is to design a physical setup to test
various feedback control strategies for the control of a WMR. Both the car type
and differential type WMRs are tested in the system. The physical vehicle is a
three-wheeled WMR, having two wheels for driving and one for steering. However
the same vehicle can serve as a differentially driven system when a castor wheel
replaces the front steering wheel. The objectives include studying and develop-
ing feedback control strategies for solving some of the typical control problems
in IVHS, Kinematic modeling of WMRs according to the constraints of geometry
and slip free motion, developing a physical system to implement the kinematic
model. The objective also includes, interfacing the physical system with the com-
puter, designing a control circuit for controlling the stepper motors which drive

the vehicle, from signals generated by the computer.

1.2 Basic concepts

The main system can be considered to constitute of the following 3 subsystems:

1. Mechanical
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Figure 1.1: Basic Control System.

2. Electronic

3. Software

The mechanical subsystem comprises of a 3-wheeled vehicle consisting of 2 rear
wheels powered by individual stepper motors and a front steering wheel powered
by another stepper motor. It also includes the reduction gearing mechanism in-
corporated to step up the torque generated by the steppers and to increase the
positioning accuracy.

The mechanical system derives its input from an electronic subsystem which
is basically an electronic stepper motor driving circuit. The logic for the circuitry
is generated from the computer’s parallel port, by the software subsystem.

The software subsystem comprises of the mathematical model of the WMR,
the various control strategies, the stepper motor driving algorithms, and various
plotting functions used for representing the vehicle motion on the computer dis-
play.

The following schematic shows the interrelationship between these subsystems.



1.3 Overview of the report

A brief idea of each chapter is presented here.

In chapter 2, a brief introduction to feedback control is given with a discussion
about Open and Closed loop control systems. The different types of vehicle models
(WMRs) are also discussed. The kinematics of the models are studied and the state
variable models developed. Different control problems (parking problem, tracking
problem, obstacle avoidance, etc.) associated with Intelligent Vehicle Highway
Systems (IVHS) are studied and Control strategies are developed to solve them.
The above control laws are simulated in MATLAB and the results examined.

In chapter 3, the kinematic model of the vehicle is discussed which gives the
values of velocities for the individual wheels of the WMR. The algorithm for
achieving this objective in the vehicle is touched upon. The various unavoidable
errors are also modeled into the algorithm. This includes the kinematic constraints
imposed due to the geometry and the discrete nature of the actuation device
(stepper motors), as well as the nonholonomic slips occurring at various wheels.

Chapter 4 discusses the physical structure of the WMR. Chapter 5 deliberates
upon the driving hardware of the system. A brief classification of stepper motors is
done. The stepper motor architecture is discussed briefly. The electronic hardware
to control the stepper motors are deliberated upon.

Chapter 6 describes the software subsystem which is the core of the control
system. Software includes algorithms for translating kinematic variables into the
system control variables, stepper motor control, and graph plotting algorithms. It
also includes the computer programming implementation of the kinematic model
of the WMR.

In chapter 7, the test results of the implementation of the strategies will be
given. The results are compared with the ideal characteristics. The limitations of

the system are described and the scope of the future work is presented.



Chapter 2
Control Strategies

Closed loop system is defined as one in which certain part of the system forcing
signals (called inputs) are determined, at least in part, by certain of the responses
of the system (called outputs). Hence the system inputs are a function of the
system outputs, and the system outputs are a function of system inputs. The
relationship is clear from Fig.2.1.

At a kinematic level, the posture (posture means both the position and orien-
tation of the mobile robot from the base) of WMR are naturally and conveniently
described (1) by the Cartesian coordinates x, y and the angle 6. In fact, control
inputs are {w;: i=[1,n]; 6;: j=[1,m]|}, the rates of rotations of the driving wheels
and the steering angles of the steering wheels, but they are not suitable for devel-
oping a universal model of WMR kinematics because of at least two reasons: (i)
the model will be dependent upon particular mechanism design; (ii) they are not
independent themselves, and the substantial kinematic redundancy, that exists in
each case of n+m>3, is completely eliminated through the rolling compatibility
conditions[1]. As a consequence, for convenience v and w, the linear and angular
velocities of WMR, are commonly considered as control inputs.

I

r=[z y 6] andu=[v w]" can be denoted as the state and control

vectors respectively. The kinematics model of WMR can be presented as:

= DB(z)-u (2.1)

where,



sinf 0
B(z) = | cos® 0 (2.2)
0 1

The above model is general and applies to any WMR, providing a unified means
of motion planning and control. For a particular vehicle, the necessary equations,
describing its kinematics and dynamics, should be added to relate v and w to {w;:
i=[1,n]; 6;: j=[1,m]}.

It is often convenient, for the purpose of analysis, synthesis and design, to
consider (at least in the beginning) a WMR with a simple kinematic structure and
low number of driven/steered wheels. This calls for the concept of kinematically
equivalent WMR (EWMR), that is based on the functional capabilities rather than
on the mechanical design of the vehicle. Two WMRs are kinematically equivalent,
if they ave the same linear and angular velocities for every time instant when
performing the same desired motion. The respective relations can be easily derived
from geometric reasoning, because both WMR and EWMR should have the same
angular velocities, the axles of their wheels should intersect in one and the same
point, the instantaneous center of rotation (ICR); adding the conditions of pure
rotation without slipping|1] uniquely determines the rates of rotation of the driving
wheels and the steering angles of the steering wheels|1].

Some basic structures of EWMRs possessing the minimum number of wheels:
an EWMR is said to be in minimal form, if it comprises the minimum necessary
and sufficient (for a prescribed task) number of joints. Three such minimal form

EWDMRs, all having three wheels configured are described here as follows:

1. one, both driving and steering , front wheel and two passive rear wheels|3],
[4];

2. one (possibly two - "car-like WMR") steering front wheel and two driving

rear wheels;
3. two driving front and one (possibly two) passive rear wheels (castor).
Comparing the minimal form EWMR  listed, the following should be pointed out:

e The first two structures have a common feature- steering and driving are
separated, while in the third case both are performed through the driving

wheels;



e [t is difficult to give preference to one of them, because all the three are

simple enough and mechanically sound, the kinematic relations are similar.

In the following work the second and third kinematic models will be discussed and
control strategies will be developed to control them. These control strategies will
then be implemented in physical systems. The second model is called car-type
WMR and the third model is called differentially driven WMR. These two types

of models are discussed in the sections that follow.

2.1 Differentially driven mobile robot

In this section, a detailed study of automatic control problem of a differentially
driven mobile robot is done and state feedback controllers are developed to achieve
the desired objective. The differentially driven mobile robot is the conventional
WMR used in most of the applications. It has no limit on turning radius and this
makes the WMR very versatile. This WMR can turn through any given angle and
even can turn through 360 degrees without needing to change its position. The
control parameters are also lesser. The control problem can be defined as follows.

The kinematic model for differentially driven WMR is described here for the
nonholonomic constraint of pure rolling and non-slipping. Based on the kinematic
model, the differentiable, time-varying kinematic controllers for the regulation
control problem will be analyzed here. Given an initial posture assumed by the
vehicle and a final desired posture, a state feedback controller has to be designed,
so as to stabilize the vehicle to the desired posture starting from the initial posture
in an environment free from obstacles. Later various standard problems in IVHS
such as parking problem, obstacle avoidance will be studied and controllers will
be developed to solve the problems from posture stabilization approach.

The model have two rear wheels driven independently, which drive as well as
steer the vehicle and a front wheel on a castor. The origin of the local coordinate
system attached to the vehicle frame of reference is located at the rear of the vehicle
midway between the two rear wheels. The longitudinal axis of the reference frame
attached to the vehicle is the line passing through the center-line of the vehicle
and the lateral axis perpendicular to the longitudinal axis, passing through the
two rear wheels. the longitudinal axis is oriented from the rear wheels towards the
front wheel and the lateral axis is oriented from the rear right wheel towards the

rear left wheel.



Figure 2.1: Differentially driven WMR.

The instantaneous position of the origin of the reference frame attached to the
vehicle is given by (¢1,¢2,q3). The position of the destination point (x4, y4,04)
to be traced in the reference frame attached to the vehicle is given by (e, es, €3).
Where,

el = The instantaneous longitudinal coordinate of the desired point to

be traced with respect to the reference system of the vehicle.

€2 = The instantaneous lateral coordinate of the desired point to be

traced with respect to the reference system attached to the vehicle.

€3 — The instantaneous angular coordinate of the desired point to be

traced with respect to the reference system of the vehicle.

The conversion of the global co-ordinates to the local co-ordinates yields the fol-

lowing:

er = (wq—q1) X cosqs+ (yg — q2) X sings (2.3)

e2 = —(z4—q1) X sings + (ya — g2) X cos gz (2.4)

es = tan™! (U) —q3 (2.5)
Ta—q1



The kinematic model for the nonholonomic constraint of pure rolling and non-

slipping is given as follows.

g1 = wvcosf
go = wsinf (2.6)
g3 = w

The above equation satisfies nonholonomic constraints of pure rolling and non-
slipping for a differentially driven WMR. ¢; and ¢, denote the location of the center
of axle between two rear wheels, i.e., the origin of the reference frame attached
to the vehicle. e; and ey are the longitudinal and lateral axis respectively in the
reference frame attached to the vehicle. ¢3 is the orientation of the mobile robot
with respect to the longitudinal axis (¢;) in the global frame of reference. v denotes
the forward longitudinal velocity and w denotes the angular velocity of the origin
of the vehicle reference frame. The differentially driven mobile robot is controlled
by the relative differential velocity of the rear wheels, i.e., there are two control
inputs (v,w), but it has three degrees of freedom (g1, g2, ¢3) in the plane.

Thus, the problem is to control the differentially driven mobile robot with two
inputs, steering angle and forward velocity of the rear wheels, to move to a desired

posture in an obstacle-free environment.

2.1.1 Control in an obstacle free environment

The control objective of this model is to force the actual Cartesian position and
orientation to a constant reference position and Orientation. The model is modeled
with respect to the global reference frame. Given a global reference plane in which
the instantaneous position and orientation of the model is given by (¢, go, g3).
The vehicle has to start at a position (x,y,#) and has to reach a given point
(%4, Y, Ba) with respect to the global reference plane.

The Control objective is to design a controller for the kinematic model given
by equation (2.6) that forces the actual Cartesian position and orientation to a
constant reference position and orientation. Based on this control objective a

simple time varying controller was proposed as follows.



vo= kl X e (27)

W = kyXeg+elxsint (2.8)

This is a general controller which satisfies Lyapunov’s criterion for stability.
Here, the longitudinal velocity is directly proportional to the longitudinal error
in the reference system attached to the vehicle. The rate at which the vehicle
should be turned is proportional to the angular orientation of the desired position
with respect to the reference frame attached to the vehicle, that is e3. The term

e2 x sint is added to the angular speed term due to the following reasons.

1. To ensure that the vehicle does not gets locked in a position when the longi-
tudinal error e; is zero but the lateral error e, is still not zero. This kind of
a situation can arise when the destination point lies in the lateral axis of the
vehicle co-ordinate system. In such a case the vehicle would have stopped
had the proportional controller been applied. Even though the destination
point was not reached.

2. To stabilize the vehicle to a desired final orientation. Which is necessary in

case the vehicle has to be parked in a desired orientation.

After substituting equation(2.7) and equation(2.8) into equation(2.6), the follow-

ing closed loop error system was developed:

@i = kix[(zqa—q1) x cosq3 + (yq — g2) X sings] X cos g3 (2.9)

G2 = ki X [(wq—q1) xcosqs+ (ys — q2) X sings] x sings (2.10)

g3 = —kaX [tan_l (u) — 9] + k3 X [~ (zg —q1) X singz + (yg — q2) X cosqs]® x sint (2.11)
Tqg—q1

The above model is modeled in MATLAB using state feedback approach and a
strategy is tested for the vehicle to reach different destination points. The MAT-
LAB model is in Appendix B1. Some plots are shown below in which, the vehicle
starts from (0, 0, 0) and reaches a point in various quadrants. The parameters:
k1l = 1 and k2 = 1. The model is simulated for 10 seconds. The plots show the
trajectory of the vehicle in a plane.

The above plots show pretty smooth trajectories and seems to be flawless

for all the positions. However it has certain disadvantages associated with it
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Figure 2.2: Simulation results for differentially driven WMR in MATLAB.

when the vehicle approaches the destination point. The speed of the vehicle drops
reasonably and the vehicle takes a lot of time to stabilize to the desired orientation.
This can be solved by adopting a higher speed when the vehicle has reached
reasonably close to the destination point. But that results in a fast zigging motion
towards the end of travel, which is also undesirable. A reasonable compromise
between the time and smoothness of motion has to be done in this case depending

on the application.

2.2 Car-like mobile robot

In this section, a detailed study of automatic control problem of a car-like mobile
robot is done and state feedback controllers are developed to achieve the desired
objective. Unlike the conventional differentially driven mobile robot, the car-like
mobile robot has a low limit on turning radius and this constraint makes the
problem more difficult. The control problem can be defined as follows:

Given an initial posture assumed by the vehicle and a final desired posture,
a state feedback controller has to be designed, so as to stabilize the vehicle to
the desired posture starting from the initial posture in an environment free from

obstacles. Later various standard problems in IVHS such as parking problem,

11
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q,

Figure 2.3: Global and local co-ordinate systems of the WMR.

obstacle avoidance will be studied and controllers will be developed to solve the
problems from posture stabilization approach.

The vehicle can be described as a three wheeled system having two rear and one
front wheel. The front wheel does the steering and the two rear wheels drive the
vehicle following the non slip condition. The origin of the local coordinate system
attached to the vehicle frame of reference is considered to be located midway
between the two rear wheels. The longitudinal axis of the reference frame attached
to the vehicle is the line passing through the center-line of the vehicle and the
lateral axis perpendicular to the longitudinal axis, passing through the two rear
wheels. The longitudinal axis is oriented from the rear wheels towards the front
wheel and the lateral axis is oriented from the rear right wheel towards the rear
left wheel.

The instantaneous position of the origin of the reference frame attached to the
vehicle is given by (¢1, g2, ¢3). The position of the point to be traced (x4, yq4,0) in

the reference frame attached to the vehicle is given by (eq, ez, €3). Where,

el = The instantaneous longitudinal coordinate of the desired point to

be traced with respect to the reference system of the vehicle.

€9 = The instantaneous lateral coordinate of the desired point to be

traced with respect to the reference system attached to the vehicle.

12



€3 = The instantaneous angular coordinate of the desired point to be

traced with respect to the reference system of the vehicle.

The conversion of the global co-ordinates to the local co-ordinates yields the fol-

lowing:

er = (Tqg—q1) X cosqs+ (Ya — g2) X sings (2.12)

ea = —(xq—q) xsings + (yq — g2) X cos g3 (2.13)

e3 = tan_l (yd — Q2> — (s (214)
Tg— 1

The kinematic model of a car-like mobile robot in fig2.2 is given by,

¢ = wvcosf

g2 = wvsinf (2.15)
) v

g3 = 7 tan ¢

The above equation satisfies nonholonomic constraints of pure rolling and non-
slipping. ¢; and ¢ denote the location of the center of axle between two rear
wheels. ¢3 is the orientation of the car-like mobile robot with respect to the
longitudinal axis (¢1), 0 is the steering angle with respect to the body and v
denotes the forward velocity of the rear wheels and 1 is the wheel base. The car-
like mobile robot is usually controlled by the steering angle and the velocity of
the rear wheels, i.e., there are two control inputs (v, ¢), but it has three degrees
of freedom (qi, g2, g3) in the plane.

Thus, the problem is to control the car-like mobile robot with two inputs,
steering angle and forward velocity of the rear wheels, to move to a desired posture
with and without the consideration of obstacles. First the problem is considered

in an obstacle-free environment.

2.2.1 Control in an obstacle-free environment

The control objective of this model is to force the actual Cartesian position and
orientation to a constant reference position and Orientation. The model is modeled

with respect to the global reference frame. Given a global reference plane in which

13



the instantaneous position and orientation of the model is given by (g1, g2, g3). The
vehicle has to start at a position (z,y, ) and has to reach a given point (x4, y4, )
with respect to the global reference plane.

The Control objective is to design a controller for the kinematic model given
by equation (2.1) that forces the actual Cartesian position and orientation to a
constant reference position and orientation. Based on this control objective a

simple time varying controller was proposed as follows.

V= g+ Upgr X € (2.16)

§ = Cpar X €3 (2.17)

This is a simple proportional controller with a small modification in the ve-
locity. Here, the longitudinal velocity is directly proportional to the longitudinal
error in the reference system attached to the vehicle. The constant value, vy is
added to the velocity term to ensure that the vehicle does not gets locked in a po-
sition when the longitudinal error e, is zero but the lateral error e, is still not zero.
This kind of a situation can arise when the destination point lies in the lateral axis
of the vehicle co-ordinate system. The vehicle would have stopped in such a case
had the proportional controller been applied, even though the destination point
was not reached. The rate at which the front steering wheels should be turned is
proportional to the angular orientation of the desired position with respect to the
reference frame attached to the vehicle, that is e;. Here v,q, and cp,, are positive
constant control gains. After substituting equation(2.16) and equation(2.17) in

equation(2.15), the following closed loop error system was developed:

g1 = Upar X €1 X COSQ3 (2.18)

J2 = Upar X €1 X 5iNgy (2.19)
X

g3 = (M) X tan(cpqr X €3) (2.20)

The above model is modeled in MATLAB using state feedback approach and a
strategy is tested for the vehicle to reach different destination points. The objective
of testing in MATLAB is to check the suitability of the strategy. The MATLAB
model is in Appendix B2. Some plots are shown below in which, the vehicle starts

from (0,0,0,) and reaches a point in various quadrants. The parameters: cp,,

14



(a) Trajectory while tracing (5, 5) . (b) Trajectory while tracing (-5, -5) .

Figure 2.4: Simulation results for car-like WMR in MATLAB.

= 1 and vy, = 1. The model is simulated for 10 seconds. The plots show the
trajectory of the vehicle in a plane.

The above plots show pretty smooth trajectories and seems to be flawless
for all the positions. However it has certain disadvantages associated with it
when the destination point distance is comparable with the vehicle dimensions.
Practically in such a situation, it is even difficult for the humans to drive properly
and the driving strategy is different from the approach when the destination point
is located at a distance. In such a situation, a different control strategy should
be employed to tackle the problem and it constitutes a different control problem.
However the vehicle can be driven to a distance reasonably close to the destination
point by the above strategy and can be chosen to stop at a certain distance, when
it starts to behave improperly.

The strategy exhibited a very interesting property. In case the destination
point lied behind the starting point, instead of turning all the way round, it
traveled backwards till it faced the goal position and then moved straight to that.
This is quiet similar to the way humans drive the vehicles. However the strategy
was unable to orient the vehicle in a final desired orientation. So it is not possible
to park this vehicle at a chosen orientation. This constitutes another problem and

is the subject of discussion in the following section.
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2.2.2 Control strategy with consideration of obstacles and

Parking problem

The control objective here is to control the car-like mobile robot with two inputs,
steering angle and forward velocity of the rear wheels, to move to a desired posture
with the consideration of obstacles.

It is well known from the experience of driving that the parking maneuver
consists of two steps, which are stabilization of a car-like mobile robot to a desired
line (y = 0,0 = 0) and a desired point by go-forwards or go-backward (z = 0),
that is;

e First step: y,0 — 0

e second step: x — 0

2.2.2.1 Control algorithm for first step

An algorithm is proposed which stabilizes y and# for the first step. In this algo-
rithm, nonlinear state feedback law is used and v is assumed to be a given non-zero
constant. The target posture in this case can be assumed to be the origin in the

global frame (¢; = 0,¢2 = 0,93 = 0). The following is the proposed control law.

v = wg,—p (2.21)

I .
0 = tanfl {—5 (kg(]g; + kﬂ)Sln a3 q2> } (222)

g3

Where, vyis constant and k; ,ko are positive scalar values. Then ¢, and g3
converges asymptotically to zero.

vg is a pre-defined constant. However, the sign of v can be freely varied. The
situation where the mobile robot should change the sign of v occurs in the following

cases:
1. When the mobile robot can not maintain the velocity due to obstacles.
2. When some measured states exceed limit values.

This freedom of changing v could be used in avoiding obstacles or restricting some
measures such as the distance from the current position to the origin. Moreover,

a proper choice of v at the start position can make a more efficient path.
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At the start the sign of v is selected by the following rule.
If cos(a — q3) > 0, then v < 0 else v > 0.

where, o = tan™! {g%}
The physical meaning of this rule is that if the front part of the WMR is closer

to the origin than the rear part, the WMR will go forwards, or it will go backwards.

2.2.2.2 Control algorithm for second step

If both ¢, and ¢3 becomes small enough as a result of controller in equation(2), we

use the following algorithm;

Vo= —k3><q1 (223)
§ = 0 (2.24)

where k3 is positive and real. Since we assumed ¢, and ¢3 are arbitrarily small

through the first algorithm, ¢; exponentially converges to zero.

2.2.3 Singular case

This algorithm is designed for short distance such as parking. If the algorithm is
used for long distances where obstacle exists, singular case can occur where the
mobile robot repeats going forward and backward for obstacles. But, this case
can be overcome by using an intermediate posture. The above algorithm can be

applied to a general parking situation where there are obstacles around the WMR.

2.3 Control strategy based on strategic positions

This is a car-type WMR, where the problem of reaching a given point can be
tackled from another approach. That can be summarized as follows. The space
in the vehicle frame of reference is divided into a number of different geometric
regions. The behavior of the vehicle can be modeled in a particular way according
to the presence of the point in a particular region of space till it reaches in a very
close vicinity of the desired point when it finally stops. Thus the behavior of the
vehicle in this model is pretty predictable and hence various control strategies can

be applied to the model easily.
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A

Figure 2.5: The kinematic representation of three-position steering model.
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The strategy can be described as follows.

The space is divided into five discrete regions with respect to the vehicle frame

of reference. These regions can be defined as follows.

1.

This portion can be defined in the vehicle Cartesian coordinate reference
plane as,

;> 0,and —e <y <€

This is the thin rectangular strip of width 2e along the longitudinal axis in

the vehicle frame of reference.

. This portion can be defined in the vehicle Cartesian coordinate reference

plane as,

y1 > €, for x; > 0

y1 >0, for ; <0

and, 27 + (y; — r2) > r?

This is the entire positive y plane, except for portion 1 and 3.

. This portion can be defined in the vehicle Cartesian coordinate reference

plane as,
ap + (g —rg) <7}
This is the portion inside a circle of radius 7,in the positive y plane, as shown

in the figure.

. This portion can be defined in the vehicle Cartesian coordinate reference

plane as,

y1 <€ for x; >0

1 <0, for z; <0

and, o7 + (y +13) > 1}

This is the entire negative y plane, except for portion 1 and 3.

. This portion can be defined in the vehicle Cartesian coordinate reference

plane as,

i+ (y+ry) <7}

This is the portion inside a circle of radius in the positive y plane, as shown
in the figure.

The control objective is to design a controller for the kinematic model given by

equation (1) that forces the actual Cartesian position and orientation to a con-

stant reference position and orientation. Based on this control objective a simple
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time varying controller was proposed as follows. For controlling the velocity the
following strategy is adopted.
if(e? + e3 > ?)

v="V
else
v=20

This means that the velocity is a constant and has a value v = Vj, for all the
points in the space except for the points inside a circle of radius c¢. this circle is
the region in which we can choose the vehicle to finally stop. This can be chosen
as small as required for the vehicle to stop at a very close vicinity of the desired
point. For the angular velocity control, the following conditional control strategy
is adopted. The angular velocity fed to the system is region specific. A step

angular displacement value is fed to the system as follows.
1. For region 1 the angular deviation is,
2. For regions 2 and 5 the value of the angular deviation is,
3. For regions 3 and 4 the value of the angular deviation is,

This simply means that, the step angular displacement is constant and its sign
+ve, -ve or 0 is chosen according to the instantaneous location of the desired point.

In the previous discussion of car-type WMR, the variation in angular change
0 was discrete. Small change in the value of § is acceptable, but when the angular
change is large, delta cannot be varied through discrete values. Here the strategy
requires ¢ to vary through large discrete values. So the state variable model needed
a modification so as to make the variation in § continuous, when a discrete value
is chosen by the strategy. A fourth state variable is included in the model. This
variable is the actual angular change that takes place when a step change in the
desired angle change takes place. That means there is a time lag between the
required value of angular change and the actual change. This time lag factor is

taken care by a parameter k. The modified model is given below.

¢ = vcosgs, (2.25)
G = wsings, (2.26)
g3 = % tan qu, (2.27)
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(a) Trajectory while tracing (25, 25) . (b) Trajectory while tracing (-25, 25) .

Figure 2.6: Simulation results for 3-position steering strategy in MATLAB.

a @ (2.28)

Here,

v = the longitudinal velocity applied to the vehicle.

04= the desired value of instantaneous angular deflection provided to the wheels
of the vehicle.

04 is a function of the region in which it lies. It is defined in equation 2.

The above model and strategy was tested for various values of state variables
and parameters. In the plots are shown below in which, the vehicle starts from
(0,0,0) and reaches various destination points. The parameters are: vy = 10, err
= 0.01 and, ¢ = 0.1.

The plots show that the vehicle reaches the destination points quiet smoothly.
No problem was identified in tracking the destination point with this strategy.
However the strategy was not very efficient in the sense that the vehicle had to go

all the way round to face a desired point before it was able to reach there.
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Chapter 3

Kinematic Model

The purpose of mathematical model for WMRs is to determine the relationship
between the pattern of motion followed by the different parts of the vehicle. This
motion is determined by the kinematic relationship between the degrees of freedom
of he motion of the wheels. For a WMR, when the wheels don’t skid, the motion
is determined by the constraints of geometry of the system. This kind of dynamic
system is called a nonholonomic system. The mathematical model of a WMR
gives the values of the actual vehicle speeds at various wheels (the two rear wheels
and the front steering wheel), when the vehicle is following a certain pattern of

motion. these values can then be implemented in the WMR to control its motion.

3.1 Geometric model

Fig. 3.1 is the geometric representation of the car-type WMR with minimum

number of degrees of freedom.

Here,

P = radius of curvature of the path of the center of gravity of the vehicle.

| = length of the vehicle.

2b = width of the vehicle.

) = the orientation of the front wheel (steering wheel) of the vehicle
w.r.t. the longitudinal direction of the vehicle.

v — the longitudinal speed of the vehicle
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Figure 3.1: Co-ordinate system of the WMR.

w = angular velocity of the vehicle center, w.r.t. the instantaneous center

of rotation.

The center of the vehicle is assumed to be lying in the mid point of the two rear
wheels and it is the origin of the coordinate system attached to the vehicle. So

from the geometry;

tand = (3.1)

|~

w= % = %tané (3.2)

The above equation represents the constraint imposed on the motion due to
the geometry of the car-type vehicle. the vehicle has to follow this constraint of

motion always to undergo slip free motion.

3.2 The kinematic controllers:

The above equations represent the kinematic constraints of the vehicle. The vehi-
cle has to obey the above condition always for slip-free motion. From the above

equations it is clear that the control parameters of the vehicle motion are the lon-
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gitudinal speed, v and the angular orientation of the front wheel, §. For automatic
control of the vehicle, v and § need to be generated by the algorithm automati-
cally in certain intervals of time. The efficiency of the WMR depends upon the
wise selection of the control law to generate the values for the control parameters.
There are various standard and specific controllers for all types of control problems
which includes the problems of WMRs also as discussed in the previous chapter.

Here we will only discuss the controllers simulated in the previous chapter.

3.2.1 Proportional controller for car-type WMR:

The control law for the proportional controller discussed in 2.3 gives the following

control law.

V= Upgr X €1+ Vg (3.3)

0 = Cpar X €3 (3.4)

This control law is simple and almost similar to a proportional controller. The
simulation of this controller is done in the previous section and the results are

quite interesting and desirable.

3.3 Calculating actual values of vehicle parame-

ters

The equations in the previous section give the velocity at the center of axle joining
the rear wheels and the angle by which the steering angle of the front wheel is
to be turned. These values are however required to be converted into the actual
values of velocities and angle for the two rear wheels of the physical system. This
is discussed in the following:

The vehicle motion can be divided into two different modes; viz, straight mode
and steering mode. Any journey of the vehicle is actually composed of a number of
straight and steering modes of travel. Considering a vehicle of length ‘I’ and width

‘2b’, the following relations can be established among the control parameters.

1. In the straight mode the vehicles travels in a straight line without any steer-

ing. In this case the steering wheel is held straight and the two rear wheels
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( vg and vg, ) rotate with the same speed, i.e., the speed given by control

algorithm, v.

§=0 (3.5)

VRI = VRr =V (36)

2. In steering mode the vehicle steers either toward left or right direction. The
steering wheel is oriented in the required direction and the two rear wheels
have to be provided motion in the desired manner following the constraints
of motion. The control algorithm gives the value of v, i.e., the speed of
center of the axis joining the rear wheels. from this v, the velocities of the
rear left and the rear right wheels (vg; and vg,), can be found out through
the following relationship. These relationships are based on the geometry of

the vehicle and the constraints of non slipping as shown in Fig. 3.1.

b = 0 (3.7)

Vg = v (1 — ? X tan 5) (3.8)
b

Vpr = U (1 + 7% tan (5> (3.9)

The values generated by the above equations are the exact decimal values and
usually fractional numbers, and many times generate recurring values. however
these values may not be achieved always, due to the following limitation of the
hardware. The actuation device used in the WMR i.e., stepper motors can take
discrete steps only. Hence it cannot attain all the discrete values of angles gener-
ated by the above equations. In such a case the required value would lie between
two discrete values achievable by the motor, separated by the step angle of the
motor. So one of the ways to solve this problem, could be to choose one of the
nearest values (usually the nearer) and use it in the vehicle. This can be done by
rounding off the actual value to the nearest achievable value with respect to the
step size. The rounding off operation can be done by the rounding off algorithm,
so that the number of steps to be turned by the motors becomes whole numbers.
The rounding off operation can be done in the following steps as follows:

d can be changed to d (achievable value of §), using the following relation.
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0o = [Tound <L> X step — cmgle] +1 (3.10)
step — angle

Here, step-angle = the step size of the stepper motor in terms of angle.
The rear wheel velocities can be converted into the achievable values by the

following relationships.

Vrr X T

VRi, = [round < > X step — distance] +t (3.11)

step — distance

Here, step-distance is the step size in terms of the liner distance traveled by
the wheels of the WMR.

Since the speed of rear left wheel has changed, the speed of the rear right wheel
will also change by a corresponding amount. The modified speed of the rear right

wheel is given by the following expression:

(3.12)

X tand,
1 —

1+
X tand,

~| e~

URr = URr (

The above expression for speed of the rear right wheel has to be rounded off

to obtain the achievable speed vg,, as follows:

VRr, = [T‘ound (stepv—Rr dZsfance) X step — distance] +1 (3.13)
Thus from the above equations, the values of the control parameters (64, Vg1, , Vrr, )
for the three wheels of the vehicle are obtained. These values are used in the step-
per algorithm to generate the signals to control the motors in the desired fashion.
One interesting thing to note here is that the motion is not 100% slip-free.
When the vehicle is taking a turn, the vg;, value can be arbitrarily chosen. But
the velocity of the rear right wheel vg,,, should correspond to equation 3., which
is the modified value of velocity corresponding to the value of vg;, . But this value
may not be achievable by the wheel. Thus the velocity assumed by the right wheel
is vgr, and there is a small amount of slip in the motion. This slip can be reduced if
the step-distance size of the wheels is very small. Since the slip occurring here is a
geometric error, it can be controlled by modeling it into the kinematics. However
any method of calculating the slip (to any amount of accuracy), can only help to
calculate the slip and accurately keep an account of it. It does not mean that the

slip has been removed.
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Figure 3.2: Calculating the next position.

3.4 Determining the next position

The system needs a state feedback response to implement closed loop control
strategies. But, the physical system does not have any state feedback response
to determine its current global or local position. So these values have to be de-
termined from the geometry of motion. Since stepper motors are exact actuation
devices, the relative displacements of the wheels can be calculated quite accurately
from the kinematic relationships of the motion. This is of course under the as-
sumption that there is no slipping in the wheels and the stepper motor is strong
enough not to miss any step due to insufficient torque. Sufficiently strong stepper
motors can be used to ensure that the motor provides enough torque to overcome
missing of steps. Thus the stepper motor can also generate very accurate feedback,
if modeled correctly. The above WMR is modeled in the following manner to give
feedback.

The velocity of the center of vehicle or the origin of the local co-ordinate
system attached to the vehicle is computed from the corrected velocity (vgi,, Vs, )

assumed by the wheels.

Vo = Bl (3.14)

(1 - %tané)
g = Oq (3.15)
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Thus the values of actual longitudinal velocity v,, and actual steering angle
dgassumed by the vehicle in the previous interval can be computed from the above
relations. The angular velocity of the local co-ordinate system of the vehicle w,

can be found for the actual motion of the vehicle as:

Vg U
w= ;a = 7“ tan d, (3.16)
Now the longitudinal increment (x), and the lateral increment (y) in a time

interval, t , in the vehicle reference frame can be computed as:

r = talnd X sin (% X tan g, x t) (3.17)
l Vg
_ —eos (Ve 1
Y o5 (1 cos ( X tan 6, X t)) (3.18)

Hence the next position of the vehicle, in the global reference frame can be

found out as,

¢ = ¢+ (x Xcosqgz—y Xsings) (3.19)
g2 = go+ (z Xsings +y X cosqs) (3.20)
B = @+ ?)l_a X tand x ¢ (3.21)

These values of the position co-ordinates, give the new position and orienta-
tion of the vehicle in the global reference frame. Then this point is treated as
the instantaneous position of the vehicle, and the entire procedure is repeated
until the vehicle reaches the destination point. The vehicle is assumed to follow
the trajectory calculated by the geometry of motion flawlessly. The small error

occurring due to slip at the wheels can however be neglected.
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Chapter 4

WMR Structure

The physical structure of the car-type WMR that has been constructed to realize
the motion as generated by the software is discussed in this chapter. The software
generates the required signals to control the motion of the stepper motors in the
desired fashion. These stepper motors are mounted on the structure of the WMR,
which rotate the wheels and cause the motion of the WMR. So for the motion
to be smooth and error-free, the vehicle structure needs to be perfect and the

structural symmetry should be retained.

4.1 The description of the vehicle:

The vehicle structure consists of the following major parts.

1. Main body

2. Stepper motor mounting arrangement

3. Speed reduction gear box in the rear wheels
4. Rear wheel assembly

5. Speed reduction gear box in the front wheel

6. Front steering wheel

The main body of the vehicle, which supports all the components is a rectangular

acrylic sheet.
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The stepper motors for the rear wheels are mounted on the structure with the
help of an aluminium angle as shown in the Fig. 4.1.

A single speed reduction gear box is mounted on the structure as shown in Fig.
4.1 between he motor and the rear wheels. This gear box reduces the speed by 60
times. The objective of using this, is to increase the resolution of the wheels so as
to increase the accuracy of the system.

The rear wheels are attached to the gear box assembly directly. These are
made of wood.

The gear box for the front wheel is attached parallel to the main structure as
shown in Fig. 4.1. It is coupled with the motor which is mounted on the main
structure.

The steering wheel is mounted directly on the structure, It takes motion from

the gearbox, with the help of a gear assembly.

4.2 Geometrical parameters of the WMR

The relevant geometrical parameters of the WMR are enumerated below:

1. Length of the vehicle (distance between the axes of the rear and the front
wheel), [ = 165mm,

2. Width of the vehicle (spacing between the rear wheels), 2b = 205mm,

3. Diameter of rear wheels = 140mm,

4. Diameter of front steering wheel = 39mm,

5. Wheel base (height of the axis of the rear wheels above the ground) = 85mm,

6. Step Distance (distance covered by either of the rear wheels in one step),

step _distance = 0.128mm,

7. Step Angle (angle turned by the steering wheel in one step), step__angle =
0.001656 radians.

It is to be noted that of the above geometrical parameters, the ones which are
required for the mathematical model of the WMR are [, b, step distance, and

step _angle only.
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4.3 Components of the WMR

The main components of the WMR structure are listed in the following table:

S.No. Part Name Description Quantity
1. Stepper Motors | Unipolar, 42mm dia, 7.5 de- 3
gree/step, 85 ohm /winding
2. Gearbox Reduction ratio - 1:16 3
3. Bevel gears 66 teeth, 23mm dia 3
4. Bevel gears 60 teeth, 30mm dia 1
5. Bevel Gears 77 teeth, 37Tmm dia 1
6. Base Acrylic sheet, 175x250 cm 1
7. Rear Wheels | Wooden, 140mm dia 2
8. Steering wheel | Plastic, 39mm dia 1

Fig. 4.1 shows illustrates the main components of the WMR.
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Figure 4.1: CAD model of the WMR.
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Chapter 5
Driving Hardware

This chapter touches upon the driving hardware of the WMR, i.e. stepper mo-
tors and their control circuitry. It covers the basic principles of stepping motors
including their classification and electronics of the basic control system. Stepper

motor control software is, however discussed in chapter 6.

5.1 Stepper Motors

Stepping motors can be viewed as electric motors without commutators. Typically,
all windings in the motor are part of the stator, and the rotor is either a permanent
magnet or, in the case of variable reluctance motors, a toothed block of some
magnetically soft material. All of the commutation must be handled externally
by the motor controller, and typically, the motors and controllers are designed so
that the motor may be held in any fixed position as well as being rotated one way
or the other. Most steppers, can be stepped at audio frequencies, allowing them
to spin quite quickly, and with an appropriate controller, they may be started and
stopped instantly at controlled orientations.

For some application, there is a choice between using servomotors and stepping
motors. Both types of motors offer similar opportunities for precise positioning,
but they differ in a number of ways. Servomotors require analog feedback control
systems of some type. Typically, this involves a potentiometer to provide feedback
about the rotor position, and some mix of circuitry to drive a current through
the motor inversely proportional to the difference between the desired position
and the current position. In making a choice between steppers and servos, a

number of issues must be considered; which of these will matter depends on the
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application. For example, the repeatability of positioning done with a servomotor
generally depends on the geometry of the the motor rotor, while the repeatability
of positioning done with a servomotor generally depends on the stability of the
potentiometer and other analog components in the feedback circuit.

Stepper motors can be used in simple open-loop control systems; these are
generally adequate for systems that operate at low accelerations with static loads,
but closed loop control may be essential for for high accelerations, particularly if
they involve variable loads. If a stepper in an open-loop control system is over-
torqued, all knowledge of rotor position is lost and the system must be reinitialized.

Servomotors are bot subject to this problem.

5.2 Types of stepper motors

Stepping motors come in two varieties, permanent magnet and variable reluctance
(there are also hybrid motors, which are indistinguishable from permanent mag-
net motors from the controller’s point of view). Lacking a label on the motor,
you can generally tell the two apart by feel when no power is applied. Perma-
nent magnet motors tend to "cog" as you twist the rotor with your fingers, while
variable reluctance motors almost spin freely (although they may cog slightly be-
cause of residual magnetization in the rotor). You can also distinguish between
the two varieties with an ohmmeter. Variable reluctance motors usually have
three (sometimes four) windings, with a common return, while permanent mag-
net motors usually have two independent windings, with or without center taps.
Center-tapped windings are used in unipolar permanent magnet motors.
Stepping motors come in a wide range of angular resolution. The coarsest
motors typically turn 90 degrees per step, while high resolution permanent magnet
motors are commonly able to handle 1.8 or even 0.72 degrees per step. With an
appropriate controller, most permanent magnet and hybrid motors can be run in
half-steps, and some controllers can handle smaller fractional steps or micro-steps.
For both permanent magnet and variable reluctance stepping motors, if just
one winding of the motor is energized, the rotor (under no load) will snap to a
fixed angle and then hold that angle until the torque exceeds the holding torque
of the motor, at which point, the rotor will turn, trying to hold at each successive

equilibrium point.
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5.2.1 Variable Reluctance Motors

Figure 5.1: Variable Reluctance motor.

These motors have three windings, typically connected as shown in the schematic
diagram in Fig. 5.1, with one terminal common to all windings. In use, the
common wire typically goes to the positive supply and the windings are energized
in sequence. The cross section shown in Fig. 5.1 is of 30 degree per step variable
reluctance motor. The rotor in this motor has 4 teeth and the stator has 6 poles,
with each winding wrapped around two opposite poles. With winding number 1
energized, the rotor teeth marked X are attracted to this winding’s poles. If the
current through winding 1 is turned off and winding 2 is turned on, the rotor will
rotate 30 degrees clockwise so that the poles marked Y line up with the poles
marked 2.

To rotate this motor continuously, we just apply power to the 3 windings in
sequence. Assuming positive logic, where a 1 means turning on the current through
a motor winding, the following control sequence will spin the motor illustrated in
Fig. 5.1 clockwise 24 steps or 2 revolutions:

Winding 1 1001001001001001001001001

Winding 2 0100100100100100100100100

Winding 3 0010010010010010010010010

time --->
The motor geometry illustrated in Fig. 5.1, giving 30 degrees per step, uses the

fewest number of rotor teeth and stator poles that performs satisfactorily. Using
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more motor poles and more rotor teeth allows construction of motors with smaller
step angle. Toothed faces on each pole and a correspondingly finely toothed rotor

allows for step angles as small as a few degrees.

5.2.2 Unipolar Motors

Figure 5.2: Unipolar motor.

Unipolar stepping motors, both Permanent magnet and hybrid stepping motors
with 5 or 6 wires are usually wired as shown in the schematic in Fig. 5.2, with
a center tap on each of two windings. In use, the center taps of the windings
are typically wired to the positive supply, and the two ends of each winding are
alternately grounded to reverse the direction of the field provided by that winding.

The motor cross section shown in Fig. 5.2 is of a 30 degree per step perma-
nent magnet or hybrid motor — the difference between these two motor types is
not relevant at this level of abstraction. Motor winding number 1 is distributed
between the top and bottom stator pole, while motor winding number 2 is dis-
tributed between the left and right motor poles. The rotor is a permanent magnet
with 6 poles, 3 south and 3 north, arranged around its circumference.

For higher angular resolutions, the rotor must have proportionally more poles.
The 30 degree per step motor in the figure is one of the most common permanent
magnet motor designs, although 15 and 7.5 degree per step motors are widely

available. Permanent magnet motors with resolutions as good as 1.8 degrees per
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step are made, and hybrid motors are routinely built with 3.6 and 1.8 degrees per
step, with resolutions as fine as (.72 degrees per step available.

As shown in the figure, the current flowing from the center tap of winding 1 to
terminal a causes the top stator pole to be a north pole while the bottom stator
pole is a south pole. This attracts the rotor into the position shown. If the power
to winding 1 is removed and winding 2 is energized, the rotor will turn 30 degrees,
or one step.

To rotate the motor continuously, we just apply power to the two windings
in sequence. Assuming positive logic, where a 1 means turning on the current
through a motor winding, the following two control sequences will spin the motor
illustrated in Fig. 5.2 clockwise 24 steps or 4 revolutions:

Winding 1a 1000100010001000100010001

Winding 1b 0010001000100010001000100

Winding 2a 0100010001000100010001000

Winding 2b 0001000100010001000100010

time --->

Winding 1a 1100110011001100110011001

Winding 1b 0011001100110011001100110

Winding 2a 0110011001100110011001100

Winding 2b 1001100110011001100110011

time --->

Note that the two halves of each winding are never energized at the same
time. Both sequences shown above will rotate a permanent magnet one step at
a time. The top sequence only powers one winding at a time, as illustrated in
the figure above; thus, it uses less power. The bottom sequence involves powering
two windings at a time and generally produces a torque about 1.4 times greater
than the top sequence while using twice as much power. This type of energizing

sequence is also known as a two-phase on sequence.
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5.2.3 Bipolar Motors

Figure 5.3: Bipolar motor.

Bipolar permanent magnet and hybrid motors are constructed with exactly the
same mechanism as is used on unipolar motors, but the two windings are wired
more simply, with no center taps. Thus, the motor itself is simpler but the drive
circuitry needed to reverse the polarity of each pair of motor poles is more complex.
The schematic in Fig. 5.3 shows how such a motor is wired, while the motor cross
section shown here is exactly the same as the cross section shown in Fig. 5.2.
The control sequences for single stepping such a motor are shown below, using

+ and - symbols to indicate the polarity of the power applied to each motor

terminal:
Terminal la +---+-——t-——t-oc +to—tto—tto—tt--
Terminal 1b —-+-—-to——tocoto ——ttootto—tt——t++
Terminal 2a -+-—-—-+———+———+—— —F++——++——++——++-
Terminal 2b ---+——-—+——--+—--+ +——++——++-——++-—+

time --->
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5.2.4 Bifilar Motors

Figure 5.4: Bifilar motors.

Bifilar windings on a stepping motor are applied to the same rotor and stator
geometry as a bipolar motor, but instead of winding each coil in the stator with
a single wire, two wires are wound in parallel with each other. As a result, the
motor has 8 wires, not four.

In practice, motors with bifilar windings are always powered as either unipolar
or bipolar motors. Fig. 5.4 shows the alternative connections to the windings of
such a motor.

To use a bifilar motor as a unipolar motor, the two wires of each winding are
connected in series and the point of connection is used as a center-tap. Winding
1 in Fig. 5.4 is shown connected this way. To use a bifilar motor as a bipolar
motor, the two wires of each winding are connected either in parallel or in series.

Winding 2 in Fig. 5.4 is shown with a parallel connection.
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5.2.5 Multiphase Motors

Figure 5.5: Multiphase motors.

A less common class of permanent magnet stepping motor is wired with all wind-
ings of the motor in a cyclic series, with one tap between each pair of windings
in the cycle. The most common designs in this category use 3-phase and 5-phase
wiring. These motors can provide more torque from a given package size because
all or all but one of the motor windings are energized at every point in the drive
cycle. Some 5-phase motors have high resolutions on the order of 0.72 degrees per
step (500 steps per revolution).

With a 5-phase motor, there are 10 steps per repeat in the stepping cycle, as

shown below:

Terminal 1 +++--——- B o ++

Terminal 2 --+++++-———— o o

Terminal 3 +----- e o ++++

Terminal 4 +++++————- o

Terminal 5 --——-+++++-————- +++++-
time --->

5.3 Stepper motor control circuits

This section of the chapter deals with the basic final stage drive circuitry for

unipolar stepper motors, the ones which are used in the WMR. This circuitry is
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centered on a single issue, switching the current in each motor winding on and off,
and controlling its direction. The circuitry discussed in this section is connected
directly to the motor windings and the motor power supply, and this circuitry is
controlled by a digital system, which is the computer, that determines when the

switches are turned on or off.

supply

i

control o= | [ |
signalse

L

Figure 5.6: General control circuit of a unipolar stepper motor.

Typical controllers for unipolar stepping motors are variations on the outline
shown in Fig. 5.6. In Fig. 5.6, boxes are used to represent switches; a control
unit, not shown, is responsible for providing the control signals to open and close
the switches at the appropriate times in order to spin the motors. The control
unit is commonly a computer or programmable interface controller, with software

directly generating the outputs needed to control the switches.

5.3.1 Practical control circuit for the WMR

The circuit shown in Fig. 5.6. is implemented by means of a ULN2003 chip
which handles the switching of the current through the four windings, according
to the control signals generated by the computer, in association with the control
software. The winding, which corresponds to the pin of the parallel port having a

high(on) state, is energized.

41



+12v

Windings
IBN-PC DEZS +— Common Red
ats 0 2——1 ~— 16}——<Cnill  Elack
Data 1 I—= 15 F—F—=Coil 2 Erown
Data & 4—|3 E 14— =Coil 3 Freen
Iata 3 S—4 = 13— Coild Thite
05 &5 12]
06 o 11(
0 101
s o -

Figure 5.7: ULN2003 based unipolar motor driving circuit.

The circuit shown in the figure handles one unipolar stepper motor. However,
the WMR is powered by three stepper motors. Thus each motor each stepper
motor is controlled by its own ULN2003 IC. The logic signals required for two
stepper motors (4 each) are provided by data pins 2-9, which belong to parallel
port address 0x378, while the logic signals for the third stepper motor is obtained
by pins numbered 1,14,16 and 17 which belong to parallel port address 0x37A on
a standard IBM compatible PC.
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Chapter 6
Control Software

Software forms the core of the control system. It comprises the set of algorithms
for performing the different functions involved as well as the implementation of
these algorithms in the form of a computer program. The entire software system
can be considered to consist of three components - stepper motor control software,
WDMR-specific functions which include the kinematic model, and graph plotting
functions to display the status of motion in real time. The stepper motor control
software contains the actual hardware level functions which generate the appropri-
ate parallel port signals that interact with the electronic hardware. The language
used for programming is C++ compiled under TurboC++ compiler. In the sec-
tions that follow, the three software components enumerated above are discussed
in detail.

The source code for the control software is listed in Appendix A.

6.1 Stepper motor control software

As discussed in the previous chapter, driving the stepper motors consist of switch-
ing the windings on and off in a particular sequence. The stepper motor control
software thus centers on the generation of this sequence of signals. The sequence
required at each state of the motor shaft depends on the previous state. The
control software thus has a track of the current state of the motor, and it deter-
mines the next signal, which is a four bit sequence, to be generated at the parallel
port according to this state by a suitable algorithm. Since the system consists of
three stepper motors, the algorithm also includes the selection of the motor to be

stepped and the direction in which the step is to be taken. The stepper motor
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control software consists essentially of a step function which takes the motor 1D

and direction as arguments:
step(motor ID, dir);

This step function is appropriately called by the WMR-specific functions. The
basic stepping algorithm is described by Fig. 6.1. With four bits for one motor,
the control of three motors require twelve bits. The parallel port organizes data
pins into two sets of 8 and 4 bits each, with port addresses 0x378 and 0x37A
respectively. Thus port 0x378 handles two motors(for the rear driving wheels) and
port 0x37A handles the steering motor. The step function itself doesn’t address
the parallel port. After determining the next sequence set for the motor to be
stepped, it calls a hardware level function which maps the three sequence sets into

the bit values of the two ports.
outSignal();

The stepper motor control software contains certain additional functions for
initializing the motors, for displaying the current position of the motors, and a
logging function for logging all the steps and their directions taken by each motor.
For initializing the motors, the motors are given the control signals corresponding
to the last position in the stepping sequence. This make sure that stepping takes

place, as we proceed with the first position onwards.

6.2 WDMR specific functions

The kinematic model and the actual functions for controlling the motion of the
WMR form the second aspect of the control software. This includes the incorpo-
ration of the WMR specific data such as the geometry, the values of the angle and
the distance traveled in one step of the stepper motor in the form of program vari-
ables (1, w, step_distance, step_angle). The kinematic variables - velocity
of the center, velocity of the left and the right rear wheels, steering angle and the
co-ordinates are also specified here (v, v_R1l, v_Rr, delta, ql, g2, q3). The
main functions defined in this part of the control software are the setSteering()
and the moveVehicle() functions. The moveVehicle ()function is the function
which is actually called by the main program after it calculates the values of v

and delta which are passed as arguments to this function:
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Function call
step(motor ID,dir)

}

variable and seqg uence array

Define motor position

for each motor

'

Select position variable and
seq uence array of called

motor ID

No

increment motor position
variable (pos)

decrement motor position
variable (pos)

Determine next seq uence array

if pos=1, seq uence:{0,1,0,1}
if pos=2, seq uence:{1,0,0,1}
if pos=3, seq uence:{1,0,1,0}
if pos=4, seq uence:{0,1,1,0}

'

Map th e seq uence array
of motors into th e bit
values of 0x378 & O0x37A

v

Send th e parallel port
sig nal (outportb)

Figure 6.1: Flowchart describing the stepping algorithm.
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moveVehicle(delta, v, t, distance);

The parameter t specifies the time, in seconds, for which the WMR has to travel
with the particular values of v and delta. the last argument distance, is optional
and can be used to specify the distance for which the WMR has to travel instead
of specifying the time t. The choice between distance and t is based on the
strategy used for the WMR. The algorithm for this function is described by Fig.
6.2.

A peculiar problem encountered in the WMR motion function is that the only
control over time is by means of the C++ delay() function. The only thing this
function is capable of is to suspend the execution of the program for the specified
duration. In order to step the rear motors independently, we need to step the
motors at appropriate timings in the step timing array for the individual motors.
Since there is no way to execute the stepping sequence simultaneously for the
two motors, the problem is overcome by combining the step timing arrays for the
individual motors into a single step timing array. The stepping sequence is finally
executed by calling the step() function for the particular motor at each instant
defined in the combined step timing array.

The second function, setSteering() is called by the moveVehicle() function
itself. The moveVehicle() function passes the value of delta as argument to this

function:
setSteering(delta) ;

This function first determines the increment in the value of the steering angle
delta with respect to the current value. It then makes the steering motor to take
the desired number of steps to reach the new value of delta. Fig. 6.3 shows the

algorithm for the setSteering() function.

6.3 Plotting functions

The plotting portion of the software produces a graphical display of the instanta-
neous positions of the WMR in a two-dimensional co-ordinate system. It contains
relevant functions for drawing the co-ordinate system, displaying the position of
the WMR at any instant, displaying auxillary information on the screen such as

the instantaneous co-ordinates (q1, q2, q3), and status of the WMR motion (i.e.
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moveVehicle(delta,
v, t, distance)

v

setSteering()
function call

v

calculate the achievable
values of v, v_Rl, v_Rr

v

calculate the values of ql,
g2 and q3

v

translate the values of v_Rl,v_Rr

into the no. of steps to be taken

in the specified time interval by
the rear wheels

v

calculate the delay between
consecutive steps for each of the
rear motors for a uniform
stepping speed in the specified
time interval

'

determine a step timing array for
each motor consisting of the
instants at which steps have to
be taken

’

combine the individual step
timing arrays into a unified step
timing array indicating the
timings and the required motor to
be stepped

'

execute the stepping sequence by
calling the step() funcion at
each instant of the unified
timing array

Figure 6.2: Flowchart describing the moveVehicle() function.
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steering or moving etc.). The most important part of the plotting functions is the
algorithm for mapping the WMR co-ordinate system into the screen co-ordinate
system. As opposed to the WMR co-ordinate system, the screen co-ordinate sys-
tem, i.e. the pixel positions start at the top-left corner of the screen and increase
from left to right along the width and from top to bottom along the height. The
basic transformations for mapping the WMR co-ordinate system into the screen

co-ordinate system are enumerated below.

ql_p=ql*ql_SF+ql_offset;
q2_p=screen_h-(q2*q2_SF+q2_offset);

ql_p is the horizontal pixel co-ordinate corresponding to the q1 axis and q2_p is
the vertical pixel co-ordinate corresponding to the g2 axis. Thus the WMR co-
ordinates (ql1,q2) are mapped into the screen co-ordinates (ql_p,q2_p). q1_SF
& q2_8SF are the scaling factors along the q1 and g2 axis respectively. q1_offset
and g2_offset are the horizontal and vertical offsets of the origin of the WMR
co-ordinates from the top-left corner of the screen.

The instantaneous position of the the WMR is displayed by drawing a point at
the appropriate screen co-ordinates. This is done by means of a plot() function
which carries the transformation and draws a pixel on the screen by using low-level

TurboC++ graphics functions:
plot(ql,q2,special_flag)

The special_flag argument can be used to specify the color or style of the
plotted point. The plot() function is called at appropriate situations by the
WDMR-specific functions when the stepping sequence of the driving rear motors is

executed.

6.4 Program organization

The control software is organized into a set of header files which correspond to
the three components as discussed in the beginning of this chapter. In addition
to these three header files, we have the main program which includes these header
files and which contains the strategy for the determination of the values of v and

delta. For a simple predetermined path following program, the main program
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serves to simply input the values of v, delta and t. The control is then transferred
to the header files which handle the relevant tasks. For automatic tracking, the
main program contains the algorithm for calculating the values of v, delta and
t in a loop which terminates when the desired position has been reached. The

general structure of the main program is thus as follows:

include<stepper.h>
include<wmr.h>
include<plot.h>

main()

{

initializeMotors();
initializeGFX();
---main motion loop---
calculating v,delta;
moveVehivle(delta,v,t);
closeGFX();

}

The header files are included in the beginning of the program so that the main
program can access the functions defined in these header files. The functions for
initializing the motors and the graphics display are called before the other routines.
The we have the main motion loop of the WMR in which the v and delta are
calculated according to the mode of motion i.e., trajectory tracking or automatic
control. Finally, after the motion loop is executed, the graphics are closed by

calling the closeGFX() function.
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Chapter 7
Testing and Results

The following are the objectives achieved by the project.

1. The kinematics of different types of WMRs (Differentially driven and Car-
type WMR) are studied. Some control strategies are discussed to control
various problems of vehicle automation system. The models and strategies

are simulated in MATLAB using state variable approach.

2. The control parameters for the control of the vehicle are developed from the

conditions of nonslip motion and the geometrical constraints of the system.

3. Various stepper motors were tested and unipolar stepper motor was selected

to use in the driving system.

4. A control circuit was made by using ULN2003 1Cs, which converted the
output signals generated by the control software to the required form so as

to be used by the stepper motors.

5. A control software is developed for interfacing with the driving hardware. It
includes the implementation of the various algorithms pertaining to the kine-
matic model and strategies, software for stepper motor control and certain
plotting functions for displaying the status of the WMR.

6. A visual display of the vehicle motion and a log file is generated by the control
software during the actual run of the WMR for testing and analyzing the

motion.
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7.1 Test results
The following results were obtained during the actual run of the WMR :

e It was observed that the hardware could not admit any arbitrary value of
velocity as generated by the control law or selected by the user in predefined
trajectory tracking, due to the limitations put by the stepping speed of the

motors.

e The vehicle speed was very small; which was due to the high gear reduction
(60 times) in the wheels of the vehicle.

e Fig. 7.1 a,b and 7.2 show some of the typical simulation results as generated

by the graphics display.

e A typical log file generated during execution is presented here.

ol



A typical log file generated during execution:

---Interval 1 Step Log---

delta_a=0.539883, delta_a_increment=0.539883, motor F-steps=326,
with delay=10ms, in dir=0

v_a=4.486036, v_R1_a=2.816, v_Rr_a=6.156072

Global co-ordinates of vehicle CoG: [8.9704840.146169,0.032586]
motor R1 - 44 steps

motor Rr - 96 steps

---Interval 2 Step Log---

delta_a=0.515042, delta_a_increment=-0.024841, motor F-steps=15,
with delay=10ms, in dir=1

v_a=4.540436, v_R1_a=2.944, v_Rr_a=6.136873

Global co-ordinates of vehicle CoG: [18.0404610.583327,0.063736]
motor Rl - 46 steps

motor Rr - 96 steps

---Interval 3 Step Log---

delta_a=0.491857, delta_a_increment=-0.023185, motor F-steps=14,
with delay=10ms, in dir=1

v_a=4.508598, v_R1_a=3.008, v_Rr_a=6.009195

Global co-ordinates of vehicle CoG: [27.0296541.28931,0.093016]
motor R1 - 47 steps

motor Rr - 96 steps

7.2 Scope of the future work

The following are the various improvements that can be done over the existing

software and hardware system in order to achieve better performance:

1. Various sophisticated control laws can be implemented to solve different

problems, like parking problem, obstacle avoidance, sloving a maze etc.

2. Position determining sensors can be used in the WMR to obtain state feed-

back response. These sensing information can be directly used as feedback
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Figure 7.1: Simulation Results for automatic control.



—-540 -450 -360 -270 -180

delta_a =

uv_a =

-619.8, 22.6, 3.7 Moving Uehicle

Figure 7.2: The WMR following an arbitary predefined path.

o4



signal in the control strategy, instead of using kinematically calculated po-
sition of the vehicle which are theoretically calculated and can be different

from the actual values.

. The vehicle structure can be modified to increase the speed without com-

promising much with the acurracy.
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Appendix A

Software Code

A.1 Header Files

A.1.1 stepper.h

/%

Header file containing basic 3 axis stepper motor

driving functions.

2 motors driven by 8 bits of 0x378,

one driven by 4 bits of 0x37A.

Pin-up: (0x378)-12131415] 161718[9| (0x37A)-|1|14|16(17]|
BBr0OY BBrOY- Wires - BBr 0 Y

*/

#include<iostream.h>

#include<conio.h>

#include<dos.h>

#include<math.h>

#include<fstream.h>

#include<iomanip.h>

// ---Global Variables---

int F[41,R1[4],Rr[4];

int motor=1; // F=1, R1=2, Rr=3
int dir=0; // O=clockwise, l=anticlockwise
int pos_F,pos_Rl,pos_Rr; // step position flags
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ofstream outfile("Log.txt"); // Logfile

char stat_flag=’L’; // L/1=logging, D/d=display,
//B/b=both, N/n=none

unsigned int F_count=0,R1_count=0,Rr_count=0;

// step counts initialized to O

int F_pos[5000],R1_pos[5000] ,Rr_pos[5000];// step log array

/] ——-—--

// ---Function Declarations---

void outSignal();

void initializeMotors();

void step(int motor, int dir);

void showMotorStatus();

void promptForStatus();

void showStepLog();

void write(int var);

void write(unsigned int var);

void write(float var);

void write(char* string);

void write(int var, int width);

void write(unsigned int var, int width);

void write(float var, int width);

void outSignal()

int dec_378=0;

for(int i=0;i<4;i++)

{
dec_378 += R1[i]*pow(2,1i);
}
for(i=4;i<8;i++)
{
dec_378 += Rr[i-4]*pow(2,1i);
}

int dec_37A=0;

for(i=0;i<4;i++)
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}

dec_37A += F[il*pow(2,1);

outportb(0x378,dec_378);
outportb(0x37A,dec_374);

}

void initializeMotors()

{

F[0]=1;F[1]1=0;F[2]=1;F[3]=1; pos_F=4;
R1[0]=0;R1[1]=1;R1[2]=1;R1[3]=0; pos_R1=4;
Rr[0]=0;Rr[1]=1;Rr[2]=1;Rr[3]1=0; pos_Rr=4;

outSignal();

}

void step(int motor, int dir)

{

switch(motor)

{

case 1:
{
if (dir==0)
{
pos_F++;
if (pos_F>4)
pos_F=1;
}
else
{
pos_F--;
if (pos_F<1)
pos_F=4;
}
switch(pos_F)
{
case 1:
{
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F[0]=1;F[1]=0;F[2]=0;F[3]=0;break;

}
case 2:
{
F[0]=0;F[1]=1;F[2]=0;F[3]=0;break;
}
case 3:
{
F[0]=0;F[1]=1;F[2]=1;F[3]=1;break;
}
case 4:
{
F[0]=1;F[1]=0;F[2]=1;F[3]=1;break;
}
}
//F_pos[F_count++]=dir;
break;
}
case 2:
{
if (dir==0)
{
pos_Rl++;
if (pos_R1>4)
pos_R1=1;
}
else
{
pos_Rl1--;
if (pos_R1<1)
pos_R1=4;
}
switch(pos_R1)
{
case 1:
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R1[0]=0;R1[1]1=1;R1[2]=0;R1[3]=1;break;

}
case 2:
{
R1[0]=1;R1[1]=0;R1[2]=0;R1[3]=1;break;
}
case 3:
{
R1[0]=1;R1[1]1=0;R1[2]=1;R1[3]=0;break;
}
case 4:
{
R1[0]=0;R1[11=1;R1[2]=1;R1[3]=0;break;
}
}
//R1_pos[R1_count++]=dir;
break;
}
case 3:
{
if (dir==1)
{
pos_Rr++;
if (pos_Rr>4)
pos_Rr=1;
}
else
{
pos_Rr--;
if (pos_Rr<1)
pos_Rr=4;
}
switch(pos_Rr)
{
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case 1:

{
Rr[0]=0;Rr[1]=1;Rr[2]=0;Rr[3]=1;break;
}
case 2:
{
Rr[0]=1;Rr[1]1=0;Rr[2]=0;Rr[3]=1;break;
}
case 3:
{
Rr[0]=1;Rr[1]=0;Rr[2]=1;Rr[3]=0;break;
}
case 4:
{
Rr[0]=0;Rr[1]=1;Rr[2]=1;Rr[3]=0;break;
}
}
//Rr_pos [Rr_count++]=dir;
break;
}
}
outSignal();
}
void showMotorStatus()
{
write("\n--——————————- ")

write("\nF - Pos:");write(pos_F);
write(", Current seq:");
for(int i=0;i<4;i++)

write(F[i]);
write("\nR1l - Pos:");write(pos_R1l);
write(", Current seq:");
for(i=0;i<4;i++)

write(R1[i]);

write("\nRr - Pos:");write(pos_Rr);
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write(", Current seq:");
for(i=0;i<4;i++)
write(Rr[i]);
write("\n---—————————- ")
}
void promptForStatus()
{
do
{
cout<<"\nLog staus (L) / Display onscreen (D)
/ Both (B) / None (N):";
stat_flag=getche();
}
while(stat_flag!=’"L’&&stat_flag!="1"&&
stat_flag!=’D’&&stat_flag!=’d’
&&stat_flag!=’"B’&&stat_flag!="b’&&
stat_flag!="N’&&stat_flag!=’n’);
}
void showStepLog()
{
int i,j.k;
write("\n---Step Log---");

write("\nMotor F, steps=");write(F_count);
write(":-\n");

for(i=0;i<F_count;i++)

{
write(F_pos[i]);write(" ");
if ((i+1)%25==0)
write("\n");
}

write("\nMotor R1l, steps=");write(Rl_count);
write(":-\n");

for(j=0;j<R1l_count;j++)

63



write(R1_pos[jl) ;write(" ");
if ((j+1)%25==0)
write("\n");

write("\nMotor Rr, steps=");write(Rr_count);
write(":-\n");

for (k=0;k<Rr_count ;k++)

{
write (Rr_pos[k]) ;write(" ");
if ((k+1)%25==0)
write("\n");
}
write("\n------ ");
}
void write(int var)
{
if (stat_flag=="D’||stat_flag=="d’||
stat_flag=="B’|[stat_flag=="b’)
cout< <var;
if (stat_flag=="L’||stat_flag=="1"||
stat_flag=="B’||stat_flag=="b’)
outfile<<var;
}
void write(unsigned int var)
{
if (stat_flag=="D’||stat_flag=="4d’||
stat_flag=="B’|[stat_flag=="b’)
cout<<var;
if (stat_flag=="L’||stat_flag=="1’]||
stat_flag=="B’|[stat_flag=="b’)
outfile<<var;
}
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void write(float var)
{
if(stat_flag==’D’||stat_flag=="4d’||
stat_flag=="B’||stat_flag=="b’)
cout<<var;
if (stat_flag=="L’||stat_flag=="1"||
stat_flag=="B’||stat_flag=="b’)

outfile<<var;

}
void write(char* string)
{
if (stat_flag=="D’||stat_flag==’4d’||

stat_flag=="B’|[stat_flag=="b’)
cout<<string;
if (stat_flag=="L’|[|stat_flag=="1"’]||
stat_flag=="B’|[stat_flag=="b’)
outfile<<string;
}
void write(int var, int width)
{
if (stat_flag=="D’||stat_flag=="d’||
stat_flag=="B’|[stat_flag=="b’)
cout<<setw(width)< <var;
if (stat_flag=="L’||stat_flag=="1"||
stat_flag=="B’||stat_flag==’b’)
outfile<<setw(width)<<var;
}
void write(unsigned int var, int width)
{
if (stat_flag=="D’||stat_flag=="d’||
stat_flag=="B’|[stat_flag=="b’)
cout<<setw(width)< <var;
if (stat_flag=="L’||stat_flag=="1"]|
stat_flag=="B’|[stat_flag=="b’)
outfile<<setw(width)< <var;
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}

void write(float var, int width)

{
if (stat_flag=="D’||stat_flag=="d’||
stat_flag=="B’|[stat_flag=="b’)

cout< <setw(width)< <var;

if (stat_flag=="L’||stat_flag=="1"]|
stat_flag=="B’|[stat_flag=="b’)

outfile<<setw(width)<<var;

A.1.2 wmr.h

/*

Functions to move the WMR by a pre-specified path,

which may be a straight line or an arc of

some radius.

*/

#include<process.h>

// ---Global Variables---

const float step_angle=(3.14159/1897) ,step_distance=0.128;
// units in radians and mm

const float 1=165,b=102.5; // l=length, 2b=width, in mm

float v=0,delta=0; // current centroidal speed(mm/s)
// and steering angle(radians)

float q1=0,92=0,93=0; // instantaneous global co-ordinates
// of vehicle CoG q1,q2 in mm and

// q3 in radians

float v_Rl,v_Rr; // theoretical velovity of rear left
// and right wheel

float v_Rl_a=0,v_Rr_a=0; // actual achievable velocities

float v_a=0,delta_a=0; // actual achievable centroidal

// velocity and steering angle
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const int steering_delay=10; // delay for steering steps,
// front motor, in ms

int interval_count=0; // interval counter

const float delta_a_min=0.001; // min value of delta_a for
// making a finite radius

float ql_int[800],q2_int[800],q3_int [800];

// instantaneous global co-ordinates in the time

interval - for plotting purposes only

/] —-—---

// ---Function Declarations---

int round(float num);

void moveDist(float dist, float speed, int motor, int dir);

void moveAngle(float angle, float omega, int motor, int dir);

void setSteering(float _delta);

void moveVehicle(float _delta, float _v,

float _t, float _distance);

int round(float num)
{
if ((num-floor (num))<0.5)
return floor (num);
else
return ceil(num);
}
void moveDist(float dist, float speed, int motor, int dir)
{
int steps=int(dist/step_distance);
// dist is integral multiple of step_distance
int time_delay=int(1000/(speed/step_distance));// time delay is in ms
write("\nMotor ID=") ;write(motor);
write(", steps=");write(steps);write(", time_delay=");
write(time_delay) ;write(", dir=");write(dir);
for(int i=0;i<steps;i++)
{

step(motor,dir) ;
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delay(time_delay) ;

}
void moveAngle(float angle, float omega, int motor, int dir)
{
int steps=int(angle/step_angle);
int time_delay=int(1000/(omega/step_angle)) ;
write("\nMotor ID=");write(motor) ;write(", steps=");
write(steps) ;write(", time_delay=");write(time_delay);
write(", dir=");write(dir);

for(int i=0;i<steps;i++)

{
step(motor,dir) ;
delay(time_delay);
}
}
void setSteering(float _delta)
{

float delta_a_inc, delta_a_inc_cur=0;
delta_a_inc=(round(_delta/step_angle))*step_angle-delta_a;
delta_a=(round(_delta/step_angle))*step_angle;
write("\ndelta_a=") ;write(delta_a);
write(", delta_a_increment=") ;write(delta_a_inc);
write(", motor F-steps=");write(abs(round(delta_a_inc/step_angle)));
write(", with delay=");write(steering_delay) ;write('"ms");

if (delta_a_inc>0)

write(", in dir=0");
if (delta_a_inc<0)

write(", in dir=1");

displayStatus("Steering");

if(delta_a_inc>0)
{

while(delta_a_inc_cur<delta_a_inc)

{
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step(1,0);
delay(steering_delay) ;

delta_a_inc_cur+=step_angle;

}
}
if (delta_a_inc<0)
{
while(delta_a_inc_cur>delta_a_inc)
{
step(1,1);
delay(steering_delay) ;
delta_a_inc_cur-=step_angle;
}
}

}
void moveVehicle(float _delta, float _v, float _t, float _distance)
{
int dir;
float x,y; // x & y increments in LCS per interval
interval_count++;
int p=0;
write("\n---Interval ") ;write(interval_count);

write(" Step Log---");

if (_v>=0)
dir=0;
else
dir=1;

if (_t==-1)
_t=_distance/_v;

setSteering(_delta);

//Calculating v_a, v_Rl_a & v_Rr_a
v_R1=_v*(1-(b/1l)*tan(delta_a));
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v_R1_a=(round ((v_R1*_t)/step_distance)*step_distance)/_t;
v_Rr_a=v_R1_a*(1+(b/1)*tan(delta_a))/(1-(b/1)*tan(delta_a));
v_a=v_R1l_a/(1-(b/1)*tan(delta_a));
write("\nv_a=");write(v_a) ;write(",v_Rl_a=");

write(v_R1l_a);write(", v_Rr_a=");write(v_Rr_a);

displayPar(delta_a,v_a);
displayPosition(ql,q2,q3);

//Calculating intermediate positions
float t_int=_t/100;
float x_int,y_int;
ql_int[0]=q1l;q2_int[0]=q2;q3_int[0]=q3;
for (p=0;p<100;p++)
{
if (fabs(delta_a)>delta_a_min)
{
x_int=(1/tan(delta_a))*sin((v_a/1)*tan(delta_a)*t_int) ;
y_int=(1/tan(delta_a))*(1-cos((v_a/l)*tan(delta_a)*t_int));
ql_int[p+1]1=ql_int [p]+(x_int*cos(q3_int [p])
-y_int*sin(q3_int[p]l));
q2_int[p+1]1=q2_int [p]+(x_int*sin(q3_int[p])
+y_int*cos(q3_int[p]l));
q3_int[p+1]1=qg3_int [p]l+((v_a/1) *tan(delta_a)*t_int);
}
else
{
x_int=v_a*t_int;
y_int=0;
ql_int[p+1]1=ql_int [p]+(x_int*cos(q3_int [p])
-y_int*sin(q3_int[pl));
q2_int[p+1]1=q2_int [p]+(x_int*sin(q3_int[p])
+y_int*cos(q3_int[pl));
q3_int [p+1]1=g3_int [p]+0;
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}

for(int r=0;r<p;r++)

{
write("\nql_int[") ;write(r) ;write("]=");
write(ql_int[r]) ;write(" ,q2_int[");write(r);
write("]=");write(q2_int[r]);

}

[/---—--

//Calculating final values of ql,q2 & g3
if (fabs(delta_a)>delta_a_min)
{
x=(1/tan(delta_a))*sin((v_a/1)*tan(delta_a)*_t);
y=(1/tan(delta_a))*(1-cos((v_a/l)*tan(delta_a)*_t));
ql+=x*cos(q3)-y*sin(q3);
q2+=x*sin(q3)+y*cos(q3) ;
q3+=((v_a/1)*tan(delta_a)*_t);
}
else
{
x=v_ax_t;
y=0;
ql+=x*cos(q3) -y*sin(q3) ;
q2+=x*sin(q3)+y*cos(q3) ;
q3+=0;
}
write("\nGlobal co-ordinates of vehicle CoG:

[");write(ql,4) ;write(q2,4) ;write(",") ;write(q3,4) ;write("]1");

//Calculating step timing array

if ((((fabs(v_R1l_a)*_t)/step_distance)<1.002) ||
(((fabs(v_Rr_a)*_t)/step_distance)<1.002))

{
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displayStatus("Parameters out of range. Exiting...");

write("\nParameters out of range. Exiting...");

closeGFXQ);

exit(1);

/*if (v_R1_a<=v_Rr_a)
v_R1_a=(round(1.02)*step_distance)/_t;*/

unsigned int delay_R1=(_t/(((fabs(v_R1l_a)*_t)/
step_distance)-1))*1000;
unsigned int delay_Rr=(_t/(((fabs(v_Rr_a)*_t)/s
tep_distance)-1))*1000;

unsigned int timer_R1[1000],timer_Rr[1000],timer_main[2000][2];
timer_R1[0]=0;
motor id to be stepped.
timer_Rr[0]=0;
int i=0,j=0;
while((delay_R1*(i+1))<=(_t*1000))
{
i++;

timer_R1[i]=delay_R1x*i;

}
while((delay_Rr*(j+1))<=(_t*1000))
{

j++;

timer_Rr[jl=delay_Rr*j;
}

int k=1,1=1,m=0,flag;
timer_main[m] [0]=0; timer_main[m][1]=5;
for (k=1;k<=i;k++)
{
flag=1;
while ((1<=j)&&(flag==1))
{
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if (timer_R1[k]<timer_Rr[1])

{
timer_main[++m] [0]=timer_R1[k];
timer_main[m] [1]=2;
flag=0;
}
else
{
if (timer_R1[k]==timer_Rr[1])
{
timer_main[++m] [0]=timer_R1[k];
timer_main[m] [1]=5;
1++;
flag=0;
}
else
{
timer_main[++m] [0]=timer_Rr[1];
timer_main[m] [1]=3;
1++;
}
}
}
}
for(l;1<=j;1++)
{
if (timer_R1[i] !'=timer_Rr[1])
{
timer_main[++m] [0]=timer_Rr[1];
timer_main[m] [1]=3;
}
}

if (stat_flag=="D’||stat_flag=="d’||
stat_flag=="B’||stat_flag==’b’)
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cout<<"\mmotor Rl - "<<(i+1)<<" steps";
cout<<"\mmotor Rr - "<<(j+1)<<" steps";
}
if (stat_flag=="L’||stat_flag=="1"||
stat_flag=="B’|[stat_flag=="b’)

{

outfile<<"\mmotor R1 - "<<(i+1)<<

" steps with step times:-\n";

for (p=0;p<=i;p++)

{
outfile<<setw(4)<<timer_R1[p]l<<"[|";
if ((p+1)%25==0)

outfile<<"\n";

}

outfile<<"\mmotor Rr - "<<(j+1)<<

" steps with step times:-\n";

for (p=0;p<=j;p++)

{
outfile<<setw(4)<<timer_Rr[pl<<"|";
if ((p+1)%25==0)

outfile<<"\n";

}

outfile<<"\ncombined step timing array:-\n";

for (p=0;p<=m;p++)

{
outfile<<setw(4)<<timer_main[p] [0]< <
"("<<timer_main[p] [11<<")|";
if ((p+1)%25==0)

outfile<<"\n";
}
}
write("\n--------———mm - ")
//------
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//Executing step sequence
displayStatus("Moving Vehicle");
step(2,dir);
step(3,dir);
p=0;
for(int n=1;n<=m;n++)
{
delay(timer_main[n] [0]-timer_main[n-1][0]);
if (timer_main[n] [1]==5)
{
step(2,dir) ;
step(3,dir);
}
else
{

step(timer_main[n] [1],dir);

while (((t_int*1000*p)>=timer_main[n-1][0])&&

((t_int*1000*p)<=timer_main[n] [0]))

}

{
plot(ql_int[pl,q2_int[p],0);
displayPosition(qi_int[p],q2_int[pl,q3_int[p]l);

p++;

3

plot(ql,q2,0);
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A.1.3 plot.h

/%

Plotting functions using turboc++ graphics.

Screen pixels start from top-left corner with

1st pixel as (0,0).

*/

#include<graphics.h>

#include<stdio.h>

// ---Global Variables---

const int screen_w=640,screen_h=480;

for VGAHI driver

float q1_SF=4,q2_SF=4;

co-ordinate axis respectively. can change in the main prog

int ql_offset=320,q2_offset=240; //should be a portin of

//screen_w & screen_h

int box1_x=10,box1_y=395,box1_w=150,box1_h=75;

//defines the position of the display box 1

int box2_x=330,box2_y=450,box2_w=300,box2_h=20;

//defines the position of the display box 2

int position_update_int=4//specifies intervals after which
//intermediate co-ords are displayed

//on screen

// ---Function Declarations---

void initializeGFX();

void initializeGFX(float _ql_SF, float _q2_SF);
//initialize the plot

void closeGFX();

void plot(float _ql, float _q2, int flag);

//flag specifies the type of entity to be plotted.
//0=point, 1=small filled circle.

void displayPar(float _delta, float _v_a);

void displayPosition(float _ql, float _q2, float _qg3);
void displayStatus(char* string);
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int qlToScreenx(float _ql);

int q2ToScreeny(float _q2);

float screenxToql(int x);

float screenyToq2(int y);

/] -—----

void initializeGFX()

{
//registerbgidriver (EGAVGA_driver) ;
int driver=DETECT,mode=VGAHI;
//q1_SF=_q1_SF;
//q2_SF=_q2_SF;
initgraph(&driver, &mode, "");
setcolor (EGA_WHITE) ;
setlinestyle (SOLID_LINE,O,NORM_WIDTH) ;
line(screen_w/2,0,screen_w/2,screen_h-1);
line(0,screen_h/2,screen_w-1,screen_h/2);
setfillstyle (SOLID_FILL,EGA_BLACK);
bar3d(box1_x,box1_y,boxl_x+boxl_w,boxl_y+box1i_h,0,0);
line(box1_x,box1_y+55,box1_x+boxl_w,boxl_y+55) ;
bar3d(box2_x,box2_y,box2_x+box2_w,box2_y+box2_h,0,0);
const int marker_w=screen_w/14;
const int marker_h=screen_h/14;
int x,y;
char ch[10];
settextjustify (CENTER_TEXT,TOP_TEXT) ;
x=screen_w/2;
y=screen_h/2;

while (x<screen_w)

{
x+=marker_w;
line(x,y-2,x,y+2);
sprintf(ch,"%i",int (screenxToql(x)));
outtextxy(x,y+5,ch);

}

x=screen_w/2;

7



while (x>=0)

{
x-=marker_w;
line(x,y-2,x,y+2);
sprintf(ch,"%i",int (screenxToql(x)));
outtextxy(x,y+5,ch);

}

settextjustify (RIGHT_TEXT,CENTER_TEXT) ;
x=screen_w/2;

while(y<screen_h)

{
y+=marker_h;
line(x-2,y,x+2,y);
sprintf(ch,"%i",int (screenyToq2(y)));
outtextxy(x-5,y,ch);

}

y=screen_h/2;
while (y>=0)

{
y-=marker_h;
line(x-2,y,x+2,y);
sprintf(ch,"%i",int (screenyToq2(y)));
outtextxy(x-5,y,ch);

}

}
void initializeGFX(float _ql_SF, float _q2_SF)
{
ql_SF=_q1_SF;
q2_SF=_q2_5SF;
initializeGFX();
}
void closeGFX()
{
getch();
closegraph();
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}

v
/
{

}

v

{

oid plot(float _ql, float _q2, int flag)
/copies _ql & _q2 of ql & g2 used.

int ql_p=_ql*ql_SF+ql_offset;

//valid values of (ql_p,q2_p) range
from 0,0 to 639,479 in VGAHI.

int g2_p=screen_h-(_q2*q2_SF+q2_offset) ;

switch(flag)
{
case O:
{
putpixel(ql_p,q2_p,EGA_LIGHTGREEN) ;
break;
}
case 1:
{
setfillstyle (SOLID_FILL,EGA_LIGHTRED) ;
fillellipse(ql_p,q92_p,3,3);
break;
}

}

oid displayPar(float _delta_a, float _v_a)

char ch[50];

settextjustify (LEFT_TEXT,TOP_TEXT) ;

setfillstyle (SOLID_FILL,EGA_BLACK) ;

bar (box1_x+1,box1_y+1,box1_x+boxl_w-1,boxl_y+54);
sprintf(ch,"delta_a = %5.3f",_delta_a);
outtextxy(boxl_x+5,box1_y+5,ch);

sprintf(ch,"v_a = %6.2f",_v_a);
outtextxy(boxl_x+5,box1_y+20,ch);
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void displayPosition(float _qil, float _q2, float _q3)

{
char ch[50];
settextjustify (LEFT_TEXT,TOP_TEXT) ;
setfillstyle (SOLID_FILL,EGA_BLACK) ;
bar(box1_x+1,box1_y+56,boxl_x+boxl_w-1,boxl_y+boxl_h-1);
sprintf (ch,"%5.1£,%5.1£,%5.1f",_ql,_q2,_q3) ;
outtextxy(boxl_x+5,box1_y+60,ch);

void displayStatus(char* string)

{
settextjustify (LEFT_TEXT,TOP_TEXT) ;
setfillstyle(SOLID_FILL,EGA_BLACK) ;
bar (box2_x+1,box2_y+1,box2_x+box2_w-1,box2_y+box2_h-1);
outtextxy(box2_x+5,box2_y+5,string) ;
}
int qlToScreenx(float _q1)
{
return int(_qil*ql_SF+ql_offset);
}
int g2ToScreeny(float _q2)
{
return int(screen_h-(_q2*q2_SF+q2_offset));
}
float screenxToql(int x)
{
return (x-ql_offset)/ql_SF;
}
float screenyToq2(int y)
{
return (screen_h-q2_offset-y)/q2_SF;
}
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A.2 Main Programs

A.2.1 Main program for automatic control

#include "..\stepper.h"
#include "..\plot.h"
#include "..\wmr.h"
void main()
{
float xd=-100, yd=100; // co-ordinates of destination point,
// values in mm
float v0=4.5,vpar=0.08,cpar=1;// parameters
float t=2; // time interval in s
float el,e2,e3; // local co-ordinates of destination
// point (mm,mm,radians)
float x_err=20,y_err=20; // final closeness to destination point
clrscr(Q);
promptForStatus() ;
cout<<"\nEnter destination co-ordinates:-";
cout<<"\nx=";
cin>>xd;
cout<<"y=";
cin>>yd;
initializeGFX(.3,.3);
plot(xd,yd,1);
plot(ql,q2,0);
displayStatus("Execution Begins");
while((fabs(xd-ql)>x_err) | | (fabs(yd-q2)>y_err))
{
el= (xd-q1)*cos(qg3)+(yd-q2)*sin(qg3);
e2= -(xd-ql)*sin(q3)+(yd-q2)*cos(q3);
e3= atan((yd-q2)/(xd-q1))-q3;
if ((abs(e1)>50)&&(e1!=0))
{
v=v0*((el) /abs(el));
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delta=cpar*e3;

}

else

if (e1==0)

{

v=v0;

delta=cparx*e3;

}

else

{

v=vparx*el;

delta=cparx*e3;

}

moveVehicle(delta, v, t, -1);
}
displayStatus ("Execution Complete");
closeGFX();

A.2.2 Main program for pre-defined path tracking (Trajec-
tory tracking)

#include "..\stepper.h"
#include "..\plot.h"
#include "..\wmr.h"
void main()

{

clrscr();
initializeMotors();
promptForStatus() ;
initializeGFX(.5,.5);
plot(ql,q2,0);

displayStatus("Execution Begins");
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moveVehicle(0.7853, 5, 15, -1);
moveVehicle(0, 5, 15, -1);
moveVehicle(0.7853, 5, 15, -1);
moveVehicle(0.35, 5, 15, -1);
displayStatus ("Execution Complete");
showStepLog() ;

closeGFX();

}
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Appendix B

MATLAB code

B.1 The MATLAB program for the differentially

driven vehicle:

==

, usage: qd = regulationl( t, q, flg, ki, k2 );
% inputs:

% k1 - forward velocity constant;

% k2 - angular constant;

% p - the coefficient of angle;

% q - state variables[x; y; thetal;

%t - time;

% outputs:

% qd - derivatives of states[xd; yd; thetad];
function qd = regulationl(t, q, flg, ki, k2);
function qd = wmr(t,q,flg,x,y,a,k1,k2,k3)
qd(1, 1) = -k1*((q(1) - x)*cos(q(3)) +

(q(2) - y)*sin(q(3)))*cos(q(3));

qd(2, 1) = -k1*x((q(1) - x)*cos(q(3)) +
(q(2) - y)*sin(q(3)))*sin(q(3));
qd(3, 1) = -k2%(q(3) - a) +

k3x(((x - q(1))*sin(q(3)) +
(q(2) - y)*cos(q(3)))~2)*(sin(t));
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B.2 The MATLAB program for the car-type vehi-

B.2.

cle

% To model single track kinematics - provides derivatives.
% Only steer control;

% Usage: qd = stmlder(t, q, flg, xdes,

% ydes, thetades, 1, vpar, cpar)

% Inputs:

% t - time

% q - sate variables [x; y; thetal;

% flg - not used;

% 1 - length of car;

% vpar - vehicle parameters kv - length and velocity
% cpar - control parameters

% Outputs:

% qd - derivatives of state [xd; yd; thetad];
function qd = stmlder(t, q, flg, xdes, ydes,
thetades, 1, cpar, vpar)

v=velocitycontroll(t, q, xdes, ydes, vpar);
delta=steercontroll(t, q, xdes, ydes, cpar);
qd(1,1)=v*cos(q(3));

qd(2,1)=v*sin(q(3));

qd(3,1)=v/1*tan(delta);

1 Velocity control

% To provide velocity command for controlling the vehicle,
allows reversing the car;

% Usage: delta = velocitycontroll(t, q, vpar)

% Inputs:

% t - time

% q - state [x; y; thetal
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% vpar - gain

% Outputs:

% v - velocity;

function v = velocitycontroll(t, q, xdes, ydes, vpar, dpar) ddist=(xdes-q(:

v=vpar*ddist;

B.2.2 Steer control

% To provide steer angle for controlling the vehicle;
% Usage: delta = steercontroll(t, g, cpar)

% Inputs:

% t - time

% q - state [x; y; thetal

% cpar - k gain

% Outputs:

% delta - steer angle

function delta = steercontroll(t, q, xdes, ydes, cpar)
alpha=atan2((ydes-q(2)), (xdes-q(1)))-q(3);
delta=cparx*alpha;

B.3 MATLAB program for parking problem

function qd = parkingi(t,q,flg,1,v0,k1,k2,k3,
xd,yd,thetad,x_err,y_err,theta_err); alpha=atan(q(2)/q(1));
if ((abs(q(2))<y_err)&(abs(q(3))<theta_err))
=-k3*q(1);
delta=0;
qd(1,1)=v*cos(q(3));
qd(2,1)=v*sin(q(3));
qd(3,1)=v/1xtan(delta);
else if(q(1)<0)
if (cos(alpha-q(3))>0)
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v=v0;
delta=atan((-1/v)*(k2xq(3)+k1*v*(sin(q(3))/q(3))*q(2)));
qd(1,1)=v*cos(q(3));

qd(2,1)=v*sin(q(3));

qd(3,1)=v/1*tan(delta);

else v=-v0;
delta=atan((-1/v)*(k2xq(3)+k1*v*(sin(q(3))/q(3))*q(2)));
qd(1,1)=v*cos(q(3));

qd(2,1)=v*sin(q(3));

qd(3,1)=v/1xtan(delta) ;

end

else

if (cos(alpha-q(3))>0)

v=-vO0;
delta=atan((-1/v)*(k2*q(3)+k1*xv*(sin(q(3))/q(3))*q(2)));
qd(1,1)=v*cos(q(3));

qd(2,1)=v*sin(q(3));

qd(3,1)=v/1xtan(delta);

else

v=v0;
delta=atan((-1/v)*(k2xq(3)+k1*v*(sin(q(3))/q(3))*q(2)));
qd(1,1)=v*cos(q(3));

qd(2,1)=v*sin(q(3));

qd(3,1)=v/1xtan(delta) ;

end

end

end

B.4 MATLAB program for the model having three

strategic positions

function qd = perfect2( t, q, flg, 1, delta, vO, x, y, err );
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r = 1 /( tan(delta) );

el = -(q(1) - x)*cos(q(3)) - (q(2) - y)*sin(q(3));
e2 = -(x - q(1))*sin(q(3)) - (q(2) - y)*cos(q(3));
v = velcontrol2( t, q, x, y, vO ,delta );

if ( (el >= 0) & (abs(e2) <= err) )

qd(1, 1) = v*cos(q(3));
qd(2, 1) = v*sin(q(3));
qd(3, 1) = 0;

elseif (((((e1>=0)&(e2>err)) | ((e1<0)&(e2>=0)))
&(e1~2+(e2-r)~2>r~2)) | ((((e1>=0) & (e2<-err)) |
((e1<0)&(e2<0)))&(e1~2+(e2+r)~2<r~2)))

qd(1, 1) = v*cos(q(3));
qd(2, 1) = vxsin(q(3));
qd(3, 1) = (v / 1l)*tan(delta);

elseif (((((e1>=0)&(e2<-err)) | ((e1<0)&(e2<0)))
(el ~2+(e2+r)~2>r~2)) | ((((e1>=0)&(e2>err)) |
((e1<0)&(e2>0)))&(e1~2+(e2-1r)"2<r"2)))

qd(1, 1) = v*cos(q(3));
qd(2, 1) = v*sin(q(3));
qd(3, 1) = (v/1)*tan(delta);
end

B.4.1 The velocity control

function v = velcontrol2( t, q, x, y, 1, v0, err, delta)
r =1 /( tan (delta) );

el = - (q(1) - x)*cos(q(3)) - (q(2) - yI)*sin(q(3));

e2 = - (x 8q (1))*sin(q(3)) - (q(2) - y)*cos(q(3));

c = sqrt(2*rxerr);

if( el”™2 + €272 >= ¢~2)

v = v0;
else
v =0;
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B.5

B.5.

end

MATLAB program for the modified model of

3 strategic position

function qd = perfect5( t, q, flg, 1, delta,
v0, x, y, err, c, k );

r = 1 /(tan(delta));

deltad = deltad( t, q, flg, 1, delta,

v0, x, y, err, ¢, k );

v = velcontrol( t, q, x, y, v0, ¢ );

qd(1, 1) = wv*xcos(q(3));

qd(2, 1) = v*sin(q(3));
qd(3, 1) = (v / 1)xtan(q(4));
qd(4, 1) = ( deltad - q(4) ) / &);

1 The function for deltad

function deltad = deltad(t,q,flg,l,delta,v0,x,y,err,c,k);
r=1/(tan(delta));

el = - (q(1) - x)*cos(q(3)) - (q(2) - y)*sin(q(3));

€2 = - (x - q(1))*sin(q(3)) - (q(2) - y)*cos(q(3));

v = velcontrol( t, q, x, y, v0, ¢ );

if( (el >=0) & ( abs(e2) <= err ) )

deltad = 0;

elseif( ( ( (el >=0) & ( abs(e2) <= err) ) &

(e1”2 + (e2+1r)"2<r2)) | (((e1>0) &
(abs(e2) <=err ) ) & (e1”2 + (e2 +1r )"2<1r°2)))
(((Cel >0) & ( abs(e2) <=err) ) &

(e1”2 + (e2 + )2 < 1r"2 ) )

deltad=0;
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elseif ( ( ( ( (el >=0) & (e2 > err ) ) |
((el<0)&

(e2>=0)) ) & (el™2 + (e2 -1)"2>=1"2) ) |
(C(CCel>=0) & (e2< -err) ) |

( (el <0) & (e2<0))) & (el”2 + (e2 +1)"2<1"2)))
deltad=delta;

elseif ( ( ( ( (el >0) & (e2< - err ) ) |
((el<0)&(e2<0))) & (el 2+
(e2+r)2>1r2)) | (C((el>0)%&
(e2>err) ) | ((e1<0)&(e2>0) ))&
(e1~2 + (e2 &r )"2 <r"2) ) )

deltad=-delta;

end
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